The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 1, page 89-103
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHirata, Yasushi. "The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 89-103. <http://eudml.org/doc/269888>.
@article{Hirata2015,
abstract = {In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) $p$-spaces, (strong) $\Sigma $-spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having $G_\delta $-diagonals and for the extent of spaces having point-countable bases is considered.},
author = {Hirata, Yasushi},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extent; Lindelöf degree; $G_\delta $-diagonal; point-countable base; extent; Lindelöf degree; -diagonal; point-countable base},
language = {eng},
number = {1},
pages = {89-103},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II},
url = {http://eudml.org/doc/269888},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Hirata, Yasushi
TI - The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 89
EP - 103
AB - In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) $p$-spaces, (strong) $\Sigma $-spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having $G_\delta $-diagonals and for the extent of spaces having point-countable bases is considered.
LA - eng
KW - extent; Lindelöf degree; $G_\delta $-diagonal; point-countable base; extent; Lindelöf degree; -diagonal; point-countable base
UR - http://eudml.org/doc/269888
ER -
References
top- Aull C.E., 10.1017/S0004972700042933, Bull. Austral. Math. Soc. 9 (1973), 105–108. Zbl0255.54015MR0372817DOI10.1017/S0004972700042933
- Creed G.D., 10.2140/pjm.1970.32.47, Pacific J. Math. 32 (1970), 47–54. MR0254799DOI10.2140/pjm.1970.32.47
- Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 423–501. Zbl0794.54034MR0776629
- Hajnal A., Juhász I., 10.1016/1385-7258(69)90022-5, Indag. Math. 31 (1969), 18–30. Zbl0169.53901MR0264585DOI10.1016/1385-7258(69)90022-5
- Hajnal A., Juhász I., 10.1007/BF01894566, Acta. Math. Acad. Sci. Hungar. 20 (1969), 25–37. Zbl0184.26401MR0242103DOI10.1007/BF01894566
- Hirata Y., Yajima Y., The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. (The special issue devoted to Čech) 54 (2013), no. 2, 245–257. Zbl1289.54024MR3067707
- Hodel R.E., Cardinal functions I, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl0559.54003MR0776620
- Kunen K., Luzin spaces, Topology Proc. 1 (1976), 191–199. Zbl0389.54004MR0450063
- Kunen K., Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. Zbl0534.03026MR0597342
- Roitman J., 10.1016/0016-660X(78)90020-X, Gen. Topology Appl. 8 (1978), 85–91. Zbl0398.54001MR0493957DOI10.1016/0016-660X(78)90020-X
- Yajima Y., private communication.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.