A smoothing Newton method for the second-order cone complementarity problem
Jingyong Tang; Guoping He; Li Dong; Liang Fang; Jinchuan Zhou
Applications of Mathematics (2013)
- Volume: 58, Issue: 2, page 223-247
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Jingyong, et al. "A smoothing Newton method for the second-order cone complementarity problem." Applications of Mathematics 58.2 (2013): 223-247. <http://eudml.org/doc/252504>.
@article{Tang2013,
abstract = {In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.},
author = {Tang, Jingyong, He, Guoping, Dong, Li, Fang, Liang, Zhou, Jinchuan},
journal = {Applications of Mathematics},
keywords = {second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence; second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence},
language = {eng},
number = {2},
pages = {223-247},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A smoothing Newton method for the second-order cone complementarity problem},
url = {http://eudml.org/doc/252504},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Tang, Jingyong
AU - He, Guoping
AU - Dong, Li
AU - Fang, Liang
AU - Zhou, Jinchuan
TI - A smoothing Newton method for the second-order cone complementarity problem
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 223
EP - 247
AB - In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.
LA - eng
KW - second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence; second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence
UR - http://eudml.org/doc/252504
ER -
References
top- Burke, J., Xu, S., A non-interior predictor-corrector path-following algorithm for LCP, Reformulation: Nonsmooth, Piecewise Smooth and Smoothing Methods M. Fukushima, L. Qi Kluwer Academic Publishers Boston (1999), 45-63. (1999) MR1682736
- Burke, J., Xu, S., 10.1007/s101079900111, Math. Program. 87 (2000), 113-130. (2000) Zbl1081.90603MR1734661DOI10.1007/s101079900111
- Chen, B., Chen, X., 10.1137/S1052623497321109, SIAM J. Optim. 9 (1999), 624-645. (1999) MR1681055DOI10.1137/S1052623497321109
- Chen, B., Chen, X., 10.1023/A:1026546230851, Comput. Optim. Appl. 17 (2000), 131-158. (2000) Zbl0987.90079MR1806250DOI10.1023/A:1026546230851
- Chen, B., Xiu, N., 10.1137/S1052623497316191, SIAM J. Optim. 9 (1999), 605-623. (1999) Zbl1037.90052MR1681059DOI10.1137/S1052623497316191
- Chen, J., A new merit function and its related properties for the second-order cone complementarity problem, Pac. J. Optim. 2 (2006), 167-179. (2006) Zbl1178.90324MR2548216
- Chen, J., Chen, X., Tseng, P., 10.1007/s10107-004-0538-3, Math. Program. 101 (2004), 95-117. (2004) Zbl1065.49013MR2085260DOI10.1007/s10107-004-0538-3
- Chen, J., Tseng, P., 10.1007/s10107-005-0617-0, Math. Program. 104 (2005), 293-327. (2005) Zbl1093.90063MR2179239DOI10.1007/s10107-005-0617-0
- Chen, X. D., Sun, D., Sun, J., 10.1023/A:1022996819381, Comput. Optim. Appl. 25 (2003), 39-56. (2003) Zbl1038.90084MR1996662DOI10.1023/A:1022996819381
- Chi, X. N., Liu, S. Y., 10.1007/s12190-008-0057-0, J. Appl. Math. Comput. 27 (2008), 47-61. (2008) Zbl1193.90169MR2403140DOI10.1007/s12190-008-0057-0
- Chi, X. N., Liu, S. Y., 10.1016/j.cam.2007.12.023, J. Comput. Appl. Math. 223 (2009), 114-123. (2009) Zbl1155.65045MR2463105DOI10.1016/j.cam.2007.12.023
- Chi, X. N., Liu, S. Y., 10.1080/02331930701763421, Optimization 58 (2009), 965-979. (2009) Zbl1177.90318MR2572781DOI10.1080/02331930701763421
- Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons New York (1983), reprinted by SIAM, Philadelphia, 1990. (1983) Zbl0582.49001MR0709590
- Fang, L., 10.1016/j.amc.2010.02.001, Appl. Math. Comput. 216 (2010), 1087-1095. (2010) Zbl1239.65034MR2607218DOI10.1016/j.amc.2010.02.001
- Fang, L., He, G. P., Hu, Y. H., 10.1016/j.amc.2009.06.029, Appl. Math. Comput. 215 (2009), 1020-1029. (2009) Zbl1183.65065MR2568957DOI10.1016/j.amc.2009.06.029
- Fukushima, M., Luo, Z., Tseng, P., 10.1137/S1052623400380365, SIAM J. Optim. 12 (2002), 436-460. (2002) MR1885570DOI10.1137/S1052623400380365
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optimization 15 (2005), 593-615. (2005) MR2144183DOI10.1137/S1052623403421516
- Huang, Z. H., Han, J. Y., Xu, D. C., Zhang, L. P., 10.1007/BF02877427, Sci. China, Ser. A 44 (2001), 1107-1114. (2001) Zbl1002.90072MR1860828DOI10.1007/BF02877427
- Huang, Z. H., Ni, T., 10.1007/s10589-008-9180-y, Comput. Optim. Appl. 45 (2010), 557-579. (2010) Zbl1198.90373MR2600896DOI10.1007/s10589-008-9180-y
- Ma, C., Chen, X., 10.1016/j.cam.2007.03.031, J. Comput. Appl. Math. 216 (2008), 1-13. (2008) Zbl1140.65046MR2421836DOI10.1016/j.cam.2007.03.031
- Mifflin, R., 10.1137/0315061, SIAM J. Control. Optim. 15 (1977), 957-972. (1977) Zbl0376.90081MR0461556DOI10.1137/0315061
- Pan, S. H., Chen, J. S., 10.1007/s00245-008-9054-9, Appl. Math. Optim. 59 (2009), 293-318. (2009) Zbl1169.49031MR2491700DOI10.1007/s00245-008-9054-9
- Pan, S. H., Chen, J. S., 10.1080/02331930903085359, Optimization 59 (2010), 1173-1197. (2010) Zbl1229.90239MR2738600DOI10.1080/02331930903085359
- Qi, L., 10.1287/moor.18.1.227, Math. Oper. Res. 18 (1993), 227-244. (1993) Zbl0776.65037MR1250115DOI10.1287/moor.18.1.227
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Qi, L., Sun, D., 10.1090/S0025-5718-99-01082-0, Math. Comput. 69 (2000), 283-304. (2000) MR1642766DOI10.1090/S0025-5718-99-01082-0
- Qi, L., Sun, D., Zhou, G., 10.1007/s101079900127, Math. Program. 87 (2000), 1-35. (2000) Zbl0989.90124MR1734657DOI10.1007/s101079900127
- Tang, J. Y., He, G. P., Dong, L., Fang, L., 10.1016/j.amc.2011.06.015, Appl. Math. Comput. 218 (2011), 1317-1329. (2011) Zbl1229.65101MR2831640DOI10.1016/j.amc.2011.06.015
- Toh, K. C., Tütüncü, R. H., Todd, M. J., SDPT3 Version 3.02-A MATLAB software for semidefinite-quadratic-linear programming, 2000.http://www.math.nus.edu.sg/ mattohkc/sdpt3.html, .
- Yoshise, A., 10.1137/04061427X, SIAM J. Optim. 17 (2006), 1129-1153. (2006) Zbl1136.90039MR2274506DOI10.1137/04061427X
- Zhang, L., Han, J., Huang, Z., 10.1007/s10114-004-0412-5, Acta Math. Sin. 21 (2005), 117-128. (2005) Zbl1124.90037MR2128829DOI10.1007/s10114-004-0412-5
- Zhang, J., Zhang, K., 10.1016/j.cam.2008.06.012, J. Comput. Appl. Math. 225 (2009), 1-8. (2009) Zbl1163.65043MR2490165DOI10.1016/j.cam.2008.06.012
- Zhou, G., Sun, D., Qi, L., Numerical experiments for a class of squared smoothing Newton methods for box constrained variational inequality problems, Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods M. Fukushima, L. Qi Kluwer Academic Publishers Boston (1999), 421-441. (1999) Zbl0928.65080MR1682739
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.