Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems
Applications of Mathematics (2022)
- Volume: 67, Issue: 2, page 209-231
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topTang, Jingyong, and Chen, Yuefen. "Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems." Applications of Mathematics 67.2 (2022): 209-231. <http://eudml.org/doc/297727>.
@article{Tang2022,
abstract = {There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. Moreover, we show that the iteration sequence must be bounded if the solution set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm has local superlinear or quadratical convergence under some assumptions which are much weaker than Jacobian nonsingularity assumption. Some numerical results are reported which demonstrate that our algorithm is very effective for solving CCCPs.},
author = {Tang, Jingyong, Chen, Yuefen},
journal = {Applications of Mathematics},
keywords = {circular cone complementarity problem; smoothing function; smoothing algorithm; superlinear/quadratical convergence},
language = {eng},
number = {2},
pages = {209-231},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems},
url = {http://eudml.org/doc/297727},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Tang, Jingyong
AU - Chen, Yuefen
TI - Smoothing functions and algorithm for nonsymmetric circular cone complementarity problems
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 209
EP - 231
AB - There has been much interest in studying symmetric cone complementarity problems. In this paper, we study the circular cone complementarity problem (denoted by CCCP) which is a type of nonsymmetric cone complementarity problem. We first construct two smoothing functions for the CCCP and show that they are all coercive and strong semismooth. Then we propose a smoothing algorithm to solve the CCCP. The proposed algorithm generates an infinite sequence such that the value of the merit function converges to zero. Moreover, we show that the iteration sequence must be bounded if the solution set of the CCCP is nonempty and bounded. At last, we prove that the proposed algorithm has local superlinear or quadratical convergence under some assumptions which are much weaker than Jacobian nonsingularity assumption. Some numerical results are reported which demonstrate that our algorithm is very effective for solving CCCPs.
LA - eng
KW - circular cone complementarity problem; smoothing function; smoothing algorithm; superlinear/quadratical convergence
UR - http://eudml.org/doc/297727
ER -
References
top- Alizadeh, F., Goldfarb, D., 10.1007/s10107-002-0339-5, Math. Program. 95 (2003), 3-51. (2003) Zbl1153.90522MR1971381DOI10.1007/s10107-002-0339-5
- Alzalg, B., 10.7153/oam-11-01, Oper. Matrices 11 (2017), 1-21. (2017) Zbl1404.17046MR3602626DOI10.7153/oam-11-01
- Bai, Y., Gao, X., Wang, G., 10.3934/naco.2015.5.211, Numer. Algebra Control Optim. 5 (2015), 211-231. (2015) Zbl1317.90193MR3365253DOI10.3934/naco.2015.5.211
- Bai, Y., Ma, P., Zhang, J., 10.3934/jimo.2016.12.739, J. Ind. Manag. Optim. 12 (2016), 739-756. (2016) Zbl1327.90192MR3413849DOI10.3934/jimo.2016.12.739
- Burke, J., Xu, S., 10.1007/s101079900111, Math. Program. 87 (2000), 113-130. (2000) Zbl1081.90603MR1734661DOI10.1007/s101079900111
- Chen, J.-S., Pan, S., A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs, Pac. J. Optim. 8 (2012), 33-74. (2012) Zbl1286.90148MR2919670
- Chen, J.-S., Sun, D., Sun, J., 10.1016/j.orl.2007.08.005, Oper. Res. Lett. 36 (2008), 385-392. (2008) Zbl1152.90621MR2424468DOI10.1016/j.orl.2007.08.005
- Chen, L., Ma, C., 10.1016/j.camwa.2011.01.009, Comput. Math. Appl. 61 (2011), 1407-1418. (2011) Zbl1217.65127MR2773413DOI10.1016/j.camwa.2011.01.009
- Chen, X. D., Sun, D., Sun, J., 10.1023/A:1022996819381, Comput. Optim. Appl. 25 (2003), 39-56. (2003) Zbl1038.90084MR1996662DOI10.1023/A:1022996819381
- Chi, X., Liu, S., 10.1080/02331930701763421, Optimization 58 (2009), 965-979. (2009) Zbl1177.90318MR2572781DOI10.1080/02331930701763421
- Chi, X., Liu, S., 10.1016/j.cam.2007.12.023, J. Comput. Appl. Math. 223 (2009), 114-123. (2009) Zbl1155.65045MR2463105DOI10.1016/j.cam.2007.12.023
- Chi, X., Tao, J., Zhu, Z., Duan, F., A regularized inexact smoothing Newton method for circular cone complementarity problem, Pac. J. Optim. 13 (2017), 197-218. (2017) Zbl1386.65155MR3711669
- Chi, X., Wan, Z., Zhu, Z., Yuan, L., 10.1080/02331934.2016.1217861, Optimization 65 (2016), 2227-2250. (2016) Zbl1351.90149MR3564914DOI10.1080/02331934.2016.1217861
- Chi, X., Wei, H., Wan, Z., Zhu, Z., 10.1016/S0252-9602(17)30072-3, Acta Math. Sci., Ser. B, Engl. Ed. 37 (2017), 1262-1280. (2017) Zbl1399.90207MR3683894DOI10.1016/S0252-9602(17)30072-3
- Facchinei, F., Kanzow, C., 10.1137/S0363012997322935, SIAM J. Control Optim. 37 (1999), 1150-1161. (1999) Zbl0997.90085MR1691935DOI10.1137/S0363012997322935
- Fang, L., Feng, Z., 10.1590/S1807-03022011000300005, Comput. Appl. Math. 30 (2011), 569-588. (2011) Zbl1401.90152MR2863924DOI10.1590/S1807-03022011000300005
- Fukushima, M., Luo, Z.-Q., Tseng, P., 10.1137/S1052623400380365, SIAM J. Optim. 12 (2001), 436-460. (2001) Zbl0995.90094MR1885570DOI10.1137/S1052623400380365
- Hayashi, S., Yamashita, N., Fukushima, M., 10.1137/S1052623403421516, SIAM J. Optim. 15 (2005), 593-615. (2005) Zbl1114.90139MR2144183DOI10.1137/S1052623403421516
- Huang, Z.-H., Ni, T., 10.1007/s10589-008-9180-y, Comput. Optim. Appl. 45 (2010), 557-579. (2010) Zbl1198.90373MR2600896DOI10.1007/s10589-008-9180-y
- Jin, P., Ling, C., Shen, H., 10.1007/s10589-014-9698-0, Comput. Optim. Appl. 60 (2015), 675-695. (2015) Zbl1318.49062MR3320940DOI10.1007/s10589-014-9698-0
- Ke, Y.-F., Ma, C.-F., Zhang, H., 10.1007/s40314-018-0687-2, Comput. Appl. Math. 37 (2018), 6795-6820. (2018) Zbl1413.90287MR3885844DOI10.1007/s40314-018-0687-2
- Kheirfam, B., Wang, G., 10.3934/naco.2017011, Numer. Algebra Control Optim. 7 (2017), 171-184. (2017) Zbl1365.90271MR3665011DOI10.3934/naco.2017011
- Liu, W., Wang, C., 10.1007/s40314-013-0013-y, Comput. Appl. Math. 32 (2013), 89-105. (2013) Zbl1291.90272MR3101279DOI10.1007/s40314-013-0013-y
- Lobo, M. S., Vandenberghe, L., Boyd, S., Lebret, H., 10.1016/S0024-3795(98)10032-0, Linear Algebra Appl. 284 (1998), 193-228. (1998) Zbl0946.90050MR1655138DOI10.1016/S0024-3795(98)10032-0
- Ma, P., Bai, Y., Chen, J.-S., A self-concordant interior point algorithm for nonsymmetric circular cone programming, J. Nonlinear Convex Anal. 17 (2016), 225-241. (2016) Zbl1354.90095MR3472994
- Miao, X.-H., Guo, S., Qi, N., Chen, J.-S., 10.1007/s10589-015-9781-1, Comput. Optim. Appl. 63 (2016), 495-522. (2016) Zbl1360.90250MR3457449DOI10.1007/s10589-015-9781-1
- Miao, X.-H., Yang, J., Hu, S., 10.1016/j.amc.2015.07.064, Appl. Math. Comput. 269 (2015), 155-168. (2015) Zbl1410.65124MR3396768DOI10.1016/j.amc.2015.07.064
- Palais, R. S., Terng, C.-L., 10.1007/BFb0087442, Lecture Notes in Mathematics 1353. Springer, Berlin (1988). (1988) Zbl0658.49001MR0972503DOI10.1007/BFb0087442
- Pirhaji, M., Zangiabadi, M., Mansouri, H., 10.1007/s13160-018-0317-9, Japan J. Ind. Appl. Math. 35 (2018), 1103-1121. (2018) Zbl06990734MR3868787DOI10.1007/s13160-018-0317-9
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Qi, L., Sun, D., Zhou, G., 10.1007/s101079900127, Math. Program. 87 (2000), 1-35. (2000) Zbl0989.90124MR1734657DOI10.1007/s101079900127
- Sun, D., Sun, J., 10.1007/s10107-005-0577-4, Math. Program. 103 (2005), 575-581. (2005) Zbl1099.90062MR2166550DOI10.1007/s10107-005-0577-4
- Tang, J., Dong, L., Zhou, J., Sun, L., 10.1080/02331934.2014.906595, Optimization 64 (2015), 1935-1955. (2015) Zbl1337.90071MR3361160DOI10.1080/02331934.2014.906595
- Tang, J., He, G., Dong, L., Fang, L., Zhou, J., 10.1007/s10492-013-0011-9, Appl. Math., Praha 58 (2013), 223-247. (2013) Zbl1274.90268MR3034823DOI10.1007/s10492-013-0011-9
- Yoshise, A., 10.1137/04061427X, SIAM J. Optim. 17 (2006), 1129-1153. (2006) Zbl1136.90039MR2274506DOI10.1137/04061427X
- Zhang, J., Chen, J., A smoothing Levenberg-Marquardt type method for LCP, J. Comput. Math. 22 (2004), 735-752. (2004) Zbl1068.65084MR2080440
- Zhou, J., Chen, J.-S., Properties of circular cone and spectral factorization associated with circular cone, J. Nonlinear Convex Anal. 14 (2013), 807-816. (2013) Zbl1294.49007MR3131148
- Zhou, J., Chen, J.-S., Hung, H.-F., 10.1186/1029-242X-2013-571, J. Inequal. Appl. 2013 (2013), Article ID 571, 17 pages. (2013) Zbl1297.26025MR3212998DOI10.1186/1029-242X-2013-571
- Zhou, J., Chen, J.-S., Mordukhovich, B. S., 10.1080/02331934.2014.951043, Optimization 64 (2015), 113-147. (2015) Zbl1338.90396MR3293544DOI10.1080/02331934.2014.951043
- Zhou, J., Tang, J., Chen, J.-S., 10.1007/s10957-016-0935-9, J. Optim. Theory Appl. 172 (2017), 802-823. (2017) Zbl1362.90345MR3610222DOI10.1007/s10957-016-0935-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.