Fixed points of periodic and firmly lipschitzian mappings in Banach spaces
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 4, page 573-579
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPupka, Krzysztof. "Fixed points of periodic and firmly lipschitzian mappings in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 573-579. <http://eudml.org/doc/252506>.
@article{Pupka2012,
abstract = {W.A. Kirk in 1971 showed that if $T\colon C\rightarrow C$, where $C$ is a closed and convex subset of a Banach space, is $n$-periodic and uniformly $k$-lipschitzian mapping with $k<k_0(n)$, then $T$ has a fixed point. This result implies estimates of $k_0(n)$ for natural $n\ge 2$ for the general class of $k$-lipschitzian mappings. In these cases, $k_0(n)$ are less than or equal to 2. Using very simple method we extend this and later results for a certain subclass of the family of $k$-lipschitzian mappings. In the paper we show that $k_0(3)>2$ in any Banach space. We also show that $\operatorname\{Fix\}(T)$ is a Hölder continuous retract of $C$.},
author = {Pupka, Krzysztof},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {lipschitzian mapping; firmly lipschitzian mapping; $n$-periodic mapping; fixed point; retractions; firmly Lipschitzian mapping; -periodic mapping; fixed point; Hölder continuous retraction},
language = {eng},
number = {4},
pages = {573-579},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Fixed points of periodic and firmly lipschitzian mappings in Banach spaces},
url = {http://eudml.org/doc/252506},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Pupka, Krzysztof
TI - Fixed points of periodic and firmly lipschitzian mappings in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 573
EP - 579
AB - W.A. Kirk in 1971 showed that if $T\colon C\rightarrow C$, where $C$ is a closed and convex subset of a Banach space, is $n$-periodic and uniformly $k$-lipschitzian mapping with $k<k_0(n)$, then $T$ has a fixed point. This result implies estimates of $k_0(n)$ for natural $n\ge 2$ for the general class of $k$-lipschitzian mappings. In these cases, $k_0(n)$ are less than or equal to 2. Using very simple method we extend this and later results for a certain subclass of the family of $k$-lipschitzian mappings. In the paper we show that $k_0(3)>2$ in any Banach space. We also show that $\operatorname{Fix}(T)$ is a Hölder continuous retract of $C$.
LA - eng
KW - lipschitzian mapping; firmly lipschitzian mapping; $n$-periodic mapping; fixed point; retractions; firmly Lipschitzian mapping; -periodic mapping; fixed point; Hölder continuous retraction
UR - http://eudml.org/doc/252506
ER -
References
top- Bruck R.E., 10.2140/pjm.1973.47.341, Pacific J. Math. 48 (1973), 341–357. Zbl0274.47030MR0341223DOI10.2140/pjm.1973.47.341
- Goebel K., Convexity of balls and fixed point theorems for mappings with nonexpansive square, Compositio Math. 22 (1970), 269–274. Zbl0202.12802MR0273477
- Goebel K., Kirk W.A., A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140. Zbl0265.47044MR0336468
- Goebel K., Koter M., Regularly nonexpansive mappings, Ann. Stiint. Univ. “Al.I. Cuza” Iaşi 24 (1978), 265–269. Zbl0402.47032MR0533754
- Goebel K., Złotkiewicz E., Some fixed point theorems in Banach spaces, Colloquium Math. 23 (1971), 103–106. Zbl0223.47022MR0303367
- Górnicki J., Fixed points of involution, Math. Japonica 43 (1996), no. 1, 151–155. MR1373993
- Górnicki J., Pupka K., Fixed point theorems for -periodic mappings in Banach spaces, Comment. Math. Univ. Carolin. 46 (2005), no. 1, 33–42. Zbl1123.47038MR2175857
- Kirk W.A., 10.1090/S0002-9939-1971-0284887-3, Proc. Amer. Math. Soc. 29 (1971), 294–298. Zbl0213.41303MR0284887DOI10.1090/S0002-9939-1971-0284887-3
- Kirk W.A., Sims B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Pub., Dordrecht-Boston-London, 2001. Zbl0970.54001MR1904271
- Koter M., Fixed points of lipschitzian -rotative mappings, Boll. Un. Mat. Ital. C (6) 5 (1986), 321–339. Zbl0634.47053MR0897203
- Linhart J., Fixpunkte von Involutionen -ter Ordnung, Österreich. Akad. Wiss. Math.-Natur., Kl. II 180 (1972), 89–93. Zbl0244.47041MR0303369
- Perez Garcia V., Fetter Nathansky H., Fixed points of periodic mappings in Hilbert spaces, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (2010), no. 2, 37–48. MR2771119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.