Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces

Robert Černý

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 4, page 557-571
  • ISSN: 0010-2628

Abstract

top
Let n 2 and Ω n be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space W 0 L Φ ( Ω ) , where the Young function Φ behaves like t n log α ( t ) , α < n - 1 , for t large, into the Zygmund space Z 0 n - 1 - α n ( Ω ) . We also study the same problem for the embedding of the generalized Lorentz-Sobolev space W 0 m L n m , q log α L ( Ω ) , m < n , q ( 1 , ] , α < 1 q ' , embedded into the Zygmund space Z 0 1 q ' - α ( Ω ) .

How to cite

top

Černý, Robert. "Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 557-571. <http://eudml.org/doc/252520>.

@article{Černý2012,
abstract = {Let $n\ge 2$ and $\Omega \subset \mathbb \{R\}^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^\{\Phi \}(\Omega )$, where the Young function $\Phi $ behaves like $t^n\log ^\{\alpha \}(t)$, $\alpha <n-1$, for $t$ large, into the Zygmund space $Z_0^\{\frac\{n-1-\alpha \}\{n\}\}(\Omega )$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^\{\frac\{n\}\{m\},q\}\log ^\{\alpha \}L(\Omega )$, $m< n$, $q\in (1,\infty ]$, $\alpha <\frac\{1\}\{q^\{\prime \}\}$, embedded into the Zygmund space $Z_0^\{\frac\{1\}\{q^\{\prime \}\}-\alpha \}(\Omega )$.},
author = {Černý, Robert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz-Sobolev spaces; Lorentz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; best constants; Orlicz-Sobolev space; Lorentz-Sobolev space; Moser-Trudinger inequality},
language = {eng},
number = {4},
pages = {557-571},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces},
url = {http://eudml.org/doc/252520},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Černý, Robert
TI - Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 557
EP - 571
AB - Let $n\ge 2$ and $\Omega \subset \mathbb {R}^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^{\Phi }(\Omega )$, where the Young function $\Phi $ behaves like $t^n\log ^{\alpha }(t)$, $\alpha <n-1$, for $t$ large, into the Zygmund space $Z_0^{\frac{n-1-\alpha }{n}}(\Omega )$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^{\frac{n}{m},q}\log ^{\alpha }L(\Omega )$, $m< n$, $q\in (1,\infty ]$, $\alpha <\frac{1}{q^{\prime }}$, embedded into the Zygmund space $Z_0^{\frac{1}{q^{\prime }}-\alpha }(\Omega )$.
LA - eng
KW - Orlicz-Sobolev spaces; Lorentz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; best constants; Orlicz-Sobolev space; Lorentz-Sobolev space; Moser-Trudinger inequality
UR - http://eudml.org/doc/252520
ER -

References

top
  1. Adachi S., Tanaka K., 10.1090/S0002-9939-99-05180-1, Proc. Amer. Math. Soc. 128 (199), no. 7, 2051–2057. MR1646323DOI10.1090/S0002-9939-99-05180-1
  2. Adams D.R., 10.2307/1971445, Ann. of Math. 128 (1988), 385–398. Zbl0672.31008MR0960950DOI10.2307/1971445
  3. Adimurthi,, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n -Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393–413. MR1079983
  4. Adimurthi,, 10.1007/BF02874647, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73. MR1004638DOI10.1007/BF02874647
  5. Alberico A., 10.1007/s11118-008-9085-5, Potential Anal. 28 (2008), 389–400. Zbl1152.46019MR2403289DOI10.1007/s11118-008-9085-5
  6. Alvino A., A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112. MR0501652
  7. Alvino A., Ferone V., Trombetti G., Moser-type inequalities in Lorentz spaces, Potential Anal. 5 (1996), 273–299. Zbl0856.46020MR1389498
  8. Cassani D., Ruf B., Tarsi C., Best constants for Moser type inequalities in Zygmund spaces, Mat. Contemp. 36 (2009), 79–90. Zbl1196.46023MR2582539
  9. Černý R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 (2012), no. 1, 165–198. Zbl1236.46027MR2919441
  10. Černý R., Cianchi A., Hencl S., Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/). 
  11. Černý R., Gurka P., Moser-type inequalities for generalized Lorentz-Sobolev spaces, Houston. Math. J., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/). 
  12. Černý R., Mašková S., 10.1007/s10587-010-0048-9, Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR2672414DOI10.1007/s10587-010-0048-9
  13. Cianchi A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 (1996), 39–65. Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
  14. Cianchi A., 10.1512/iumj.2005.54.2589, Indiana Univ. Math. J. 54 (2005), 669–705. Zbl1097.46016MR2151230DOI10.1512/iumj.2005.54.2589
  15. Edmunds D.E., Gurka P., Opic B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 (1995), 19–43. Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
  16. Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151–181. Zbl0829.47024MR1347439
  17. Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995-1009. Zbl0860.46024MR1415818
  18. Edmunds D.E., Gurka P., Opic B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 (1997), 116–150. Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
  19. Edmunds D.E., Gurka P., Opic B., 10.1006/jfan.1999.3508, J. Funct. Anal. 170 (2000), 307–355. MR1740655DOI10.1006/jfan.1999.3508
  20. Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119–128. Zbl0835.46027MR1331250
  21. Fusco N., Lions P.-L., Sbordone C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
  22. Hencl S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
  23. Lions P.L., 10.4171/RMI/6, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR0834360DOI10.4171/RMI/6
  24. Lorentz G.G., 10.2140/pjm.1951.1.411, Pacific J. Math. 1 (1951), 411–429. Zbl0043.11302MR0044740DOI10.2140/pjm.1951.1.411
  25. Moser J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 (1971), 1077–1092. MR0301504DOI10.1512/iumj.1971.20.20101
  26. Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), no. 3, 391–467. Zbl0956.46020MR1698383
  27. Pohozhaev S.I., On the imbedding Sobolev theorem for p l = n , Doklady Conference, Section Math., pp. 158–170, Moscow Power Inst., Moscow, 1965. 
  28. Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. Zbl0724.46032MR1113700
  29. Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484. Zbl0163.36402MR0216286
  30. Yudovich V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 (1961), 746–749. Zbl0144.14501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.