Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 4, page 557-571
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topČerný, Robert. "Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces." Commentationes Mathematicae Universitatis Carolinae 53.4 (2012): 557-571. <http://eudml.org/doc/252520>.
@article{Černý2012,
abstract = {Let $n\ge 2$ and $\Omega \subset \mathbb \{R\}^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^\{\Phi \}(\Omega )$, where the Young function $\Phi $ behaves like $t^n\log ^\{\alpha \}(t)$, $\alpha <n-1$, for $t$ large, into the Zygmund space $Z_0^\{\frac\{n-1-\alpha \}\{n\}\}(\Omega )$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^\{\frac\{n\}\{m\},q\}\log ^\{\alpha \}L(\Omega )$, $m< n$, $q\in (1,\infty ]$, $\alpha <\frac\{1\}\{q^\{\prime \}\}$, embedded into the Zygmund space $Z_0^\{\frac\{1\}\{q^\{\prime \}\}-\alpha \}(\Omega )$.},
author = {Černý, Robert},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Orlicz-Sobolev spaces; Lorentz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; best constants; Orlicz-Sobolev space; Lorentz-Sobolev space; Moser-Trudinger inequality},
language = {eng},
number = {4},
pages = {557-571},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces},
url = {http://eudml.org/doc/252520},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Černý, Robert
TI - Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 4
SP - 557
EP - 571
AB - Let $n\ge 2$ and $\Omega \subset \mathbb {R}^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^{\Phi }(\Omega )$, where the Young function $\Phi $ behaves like $t^n\log ^{\alpha }(t)$, $\alpha <n-1$, for $t$ large, into the Zygmund space $Z_0^{\frac{n-1-\alpha }{n}}(\Omega )$. We also study the same problem for the embedding of the generalized Lorentz-Sobolev space $W_0^mL^{\frac{n}{m},q}\log ^{\alpha }L(\Omega )$, $m< n$, $q\in (1,\infty ]$, $\alpha <\frac{1}{q^{\prime }}$, embedded into the Zygmund space $Z_0^{\frac{1}{q^{\prime }}-\alpha }(\Omega )$.
LA - eng
KW - Orlicz-Sobolev spaces; Lorentz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; best constants; Orlicz-Sobolev space; Lorentz-Sobolev space; Moser-Trudinger inequality
UR - http://eudml.org/doc/252520
ER -
References
top- Adachi S., Tanaka K., 10.1090/S0002-9939-99-05180-1, Proc. Amer. Math. Soc. 128 (199), no. 7, 2051–2057. MR1646323DOI10.1090/S0002-9939-99-05180-1
- Adams D.R., 10.2307/1971445, Ann. of Math. 128 (1988), 385–398. Zbl0672.31008MR0960950DOI10.2307/1971445
- Adimurthi,, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the -Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 393–413. MR1079983
- Adimurthi,, 10.1007/BF02874647, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 49–73. MR1004638DOI10.1007/BF02874647
- Alberico A., 10.1007/s11118-008-9085-5, Potential Anal. 28 (2008), 389–400. Zbl1152.46019MR2403289DOI10.1007/s11118-008-9085-5
- Alvino A., A limit case of the Sobolev inequality in Lorentz spaces, Rend. Accad. Sci. Fis. Mat. Napoli (4) 44 (1977), 105–112. MR0501652
- Alvino A., Ferone V., Trombetti G., Moser-type inequalities in Lorentz spaces, Potential Anal. 5 (1996), 273–299. Zbl0856.46020MR1389498
- Cassani D., Ruf B., Tarsi C., Best constants for Moser type inequalities in Zygmund spaces, Mat. Contemp. 36 (2009), 79–90. Zbl1196.46023MR2582539
- Černý R., Concentration-compactness principle for embedding into multiple exponential spaces, Math. Inequal. Appl. 15 (2012), no. 1, 165–198. Zbl1236.46027MR2919441
- Černý R., Cianchi A., Hencl S., Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/).
- Černý R., Gurka P., Moser-type inequalities for generalized Lorentz-Sobolev spaces, Houston. Math. J., to appear (preprint is available at http://www.karlin.mff.cuni.cz/kma-preprints/).
- Černý R., Mašková S., 10.1007/s10587-010-0048-9, Czechoslovak Math. J. 60 (2010), no. 3, 751–782. MR2672414DOI10.1007/s10587-010-0048-9
- Cianchi A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 (1996), 39–65. Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
- Cianchi A., 10.1512/iumj.2005.54.2589, Indiana Univ. Math. J. 54 (2005), 669–705. Zbl1097.46016MR2151230DOI10.1512/iumj.2005.54.2589
- Edmunds D.E., Gurka P., Opic B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 (1995), 19–43. Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151–181. Zbl0829.47024MR1347439
- Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995-1009. Zbl0860.46024MR1415818
- Edmunds D.E., Gurka P., Opic B., 10.1006/jfan.1996.3037, J. Funct. Anal. 146 (1997), 116–150. Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
- Edmunds D.E., Gurka P., Opic B., 10.1006/jfan.1999.3508, J. Funct. Anal. 170 (2000), 307–355. MR1740655DOI10.1006/jfan.1999.3508
- Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119–128. Zbl0835.46027MR1331250
- Fusco N., Lions P.-L., Sbordone C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 (1996), 561–565. Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hencl S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 (2003), no. 1, 196–227. Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Lions P.L., 10.4171/RMI/6, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR0834360DOI10.4171/RMI/6
- Lorentz G.G., 10.2140/pjm.1951.1.411, Pacific J. Math. 1 (1951), 411–429. Zbl0043.11302MR0044740DOI10.2140/pjm.1951.1.411
- Moser J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 (1971), 1077–1092. MR0301504DOI10.1512/iumj.1971.20.20101
- Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl. 2 (1999), no. 3, 391–467. Zbl0956.46020MR1698383
- Pohozhaev S.I., On the imbedding Sobolev theorem for , Doklady Conference, Section Math., pp. 158–170, Moscow Power Inst., Moscow, 1965.
- Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc., New York, 1991. Zbl0724.46032MR1113700
- Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–484. Zbl0163.36402MR0216286
- Yudovich V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 (1961), 746–749. Zbl0144.14501
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.