A sharp form of an embedding into multiple exponential spaces
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 751-782
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topČerný, Robert, and Mašková, Silvie. "A sharp form of an embedding into multiple exponential spaces." Czechoslovak Mathematical Journal 60.3 (2010): 751-782. <http://eudml.org/doc/38040>.
@article{Černý2010,
abstract = {Let $\Omega $ be a bounded open set in $\mathbb \{R\}^n$, $n \ge 2$. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of $K$ such that \[ \sup \bigg \lbrace \int \_\{\Omega \} \exp \Big (\Big (\frac\{\left|f(x)\right|\}\{K\}\Big )^\{n/(n-1)\}\Big )\colon f\in W^\{1,n\}\_0(\Omega ),\Vert \nabla f\Vert \_\{L^n\}\le 1\bigg \rbrace <\infty . \]
We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^\{n-1\}L \log ^\{\alpha \}\log L$$(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^\{n/(n-1-\alpha )\}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.},
author = {Černý, Robert, Mašková, Silvie},
journal = {Czechoslovak Mathematical Journal},
keywords = {Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants; Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant},
language = {eng},
number = {3},
pages = {751-782},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharp form of an embedding into multiple exponential spaces},
url = {http://eudml.org/doc/38040},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Černý, Robert
AU - Mašková, Silvie
TI - A sharp form of an embedding into multiple exponential spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 751
EP - 782
AB - Let $\Omega $ be a bounded open set in $\mathbb {R}^n$, $n \ge 2$. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of $K$ such that \[ \sup \bigg \lbrace \int _{\Omega } \exp \Big (\Big (\frac{\left|f(x)\right|}{K}\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\Vert \nabla f\Vert _{L^n}\le 1\bigg \rbrace <\infty . \]
We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$$(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.
LA - eng
KW - Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants; Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant
UR - http://eudml.org/doc/38040
ER -
References
top- Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory, Springer (1996). (1996) MR1411441
- Cianchi, A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 39-65 (1996). (1996) Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
- Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
- Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
- Edmunds, D. E., Gurka, P., Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh 126A 995-1009 (1996). (1996) Zbl0860.46024MR1415818
- Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Functional Analysis 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
- Edmunds, D. E., Gurka, P., Opic, B., 10.1090/S0002-9939-98-04327-5, Proc. Amer. Math. Soc. 126 2417-2425 (1998). (1998) MR1451796DOI10.1090/S0002-9939-98-04327-5
- Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 119-128 (1995). (1995) Zbl0835.46027MR1331250
- Fusco, N., Lions, P. L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
- Hedberg, L. I., 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 505-512 (1972). (1972) MR0312232DOI10.1090/S0002-9939-1972-0312232-4
- Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 196-227 (2003). (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
- Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) MR0301504DOI10.1512/iumj.1971.20.20101
- Opic, B., Pick, L., On generalized Lorentz-Zygmund spaces, Math. Ineq. Appl. 2 391-467 (July 1999). Zbl0956.46020MR1698383
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure Appl. Math. (1991). (1991) Zbl0724.46032MR1113700
- Strichartz, R. S., 10.1512/iumj.1972.21.21066, Indiana Univ. Math. J. 21 841-842 (1972). (1972) MR0293389DOI10.1512/iumj.1972.21.21066
- Talenti, G., Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications 5 177-230 (1994), Prometheus Publ. House Prague. (1994) Zbl0872.46020MR1322313
- Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-484 (1967). (1967) Zbl0163.36402MR0216286
- Yudovich, V. I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 746-749 (1961). (1961) Zbl0144.14501
Citations in EuDML Documents
top- Robert Černý, Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range
- Robert Černý, On generalized Moser-Trudinger inequalities without boundary condition
- Robert Černý, Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces
- Robert Černý, Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
- Robert Černý, Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces
- Robert Černý, Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
- Robert Černý, Generalized -Laplacian: semilinear Neumann problem with the critical growth
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.