A sharp form of an embedding into multiple exponential spaces

Robert Černý; Silvie Mašková

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 751-782
  • ISSN: 0011-4642

Abstract

top
Let Ω be a bounded open set in n , n 2 . In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of K such that sup Ω exp f ( x ) K n / ( n - 1 ) : f W 0 1 , n ( Ω ) , f L n 1 < . We extend this result to the situation in which the underlying space L n is replaced by the generalized Zygmund space L n log n - 1 L log α log L ( α < n - 1 ) , the corresponding space of exponential growth then being given by a Young function which behaves like exp ( exp ( t n / ( n - 1 - α ) ) ) for large t . We also discuss the case of an embedding into triple and other multiple exponential cases.

How to cite

top

Černý, Robert, and Mašková, Silvie. "A sharp form of an embedding into multiple exponential spaces." Czechoslovak Mathematical Journal 60.3 (2010): 751-782. <http://eudml.org/doc/38040>.

@article{Černý2010,
abstract = {Let $\Omega $ be a bounded open set in $\mathbb \{R\}^n$, $n \ge 2$. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of $K$ such that \[ \sup \bigg \lbrace \int \_\{\Omega \} \exp \Big (\Big (\frac\{\left|f(x)\right|\}\{K\}\Big )^\{n/(n-1)\}\Big )\colon f\in W^\{1,n\}\_0(\Omega ),\Vert \nabla f\Vert \_\{L^n\}\le 1\bigg \rbrace <\infty . \] We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^\{n-1\}L \log ^\{\alpha \}\log L$$(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^\{n/(n-1-\alpha )\}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.},
author = {Černý, Robert, Mašková, Silvie},
journal = {Czechoslovak Mathematical Journal},
keywords = {Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants; Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant},
language = {eng},
number = {3},
pages = {751-782},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sharp form of an embedding into multiple exponential spaces},
url = {http://eudml.org/doc/38040},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Černý, Robert
AU - Mašková, Silvie
TI - A sharp form of an embedding into multiple exponential spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 751
EP - 782
AB - Let $\Omega $ be a bounded open set in $\mathbb {R}^n$, $n \ge 2$. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of $K$ such that \[ \sup \bigg \lbrace \int _{\Omega } \exp \Big (\Big (\frac{\left|f(x)\right|}{K}\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\Vert \nabla f\Vert _{L^n}\le 1\bigg \rbrace <\infty . \] We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$$(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.
LA - eng
KW - Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants; Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant
UR - http://eudml.org/doc/38040
ER -

References

top
  1. Adams, D. R., Hedberg, L. I., Function Spaces and Potential Theory, Springer (1996). (1996) MR1411441
  2. Cianchi, A., 10.1512/iumj.1996.45.1958, Indiana Univ. Math. J. 45 39-65 (1996). (1996) Zbl0860.46022MR1406683DOI10.1512/iumj.1996.45.1958
  3. Edmunds, D. E., Gurka, P., Opic, B., 10.1512/iumj.1995.44.1977, Indiana Univ. Math. J. 44 19-43 (1995). (1995) Zbl0826.47021MR1336431DOI10.1512/iumj.1995.44.1977
  4. Edmunds, D. E., Gurka, P., Opic, B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 151-181 (1995). (1995) Zbl0829.47024MR1347439
  5. Edmunds, D. E., Gurka, P., Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh 126A 995-1009 (1996). (1996) Zbl0860.46024MR1415818
  6. Edmunds, D. E., Gurka, P., Opic, B., 10.1006/jfan.1996.3037, J. Functional Analysis 146 116-150 (1997). (1997) Zbl0934.46036MR1446377DOI10.1006/jfan.1996.3037
  7. Edmunds, D. E., Gurka, P., Opic, B., 10.1090/S0002-9939-98-04327-5, Proc. Amer. Math. Soc. 126 2417-2425 (1998). (1998) MR1451796DOI10.1090/S0002-9939-98-04327-5
  8. Edmunds, D. E., Krbec, M., Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 119-128 (1995). (1995) Zbl0835.46027MR1331250
  9. Fusco, N., Lions, P. L., Sbordone, C., 10.1090/S0002-9939-96-03136-X, Proc. Amer. Math. Soc. 124 561-565 (1996). (1996) Zbl0841.46023MR1301025DOI10.1090/S0002-9939-96-03136-X
  10. Hedberg, L. I., 10.1090/S0002-9939-1972-0312232-4, Proc. Amer. Math. Soc. 36 505-512 (1972). (1972) MR0312232DOI10.1090/S0002-9939-1972-0312232-4
  11. Hencl, S., 10.1016/S0022-1236(02)00172-6, J. Funct. Anal. 204 196-227 (2003). (2003) Zbl1034.46031MR2004749DOI10.1016/S0022-1236(02)00172-6
  12. Moser, J., 10.1512/iumj.1971.20.20101, Indiana Univ. Math. J. 20 1077-1092 (1971). (1971) MR0301504DOI10.1512/iumj.1971.20.20101
  13. Opic, B., Pick, L., On generalized Lorentz-Zygmund spaces, Math. Ineq. Appl. 2 391-467 (July 1999). Zbl0956.46020MR1698383
  14. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure Appl. Math. (1991). (1991) Zbl0724.46032MR1113700
  15. Strichartz, R. S., 10.1512/iumj.1972.21.21066, Indiana Univ. Math. J. 21 841-842 (1972). (1972) MR0293389DOI10.1512/iumj.1972.21.21066
  16. Talenti, G., Inequalities in rearrangement invariant function spaces, Nonlinear Analysis, Function Spaces and Applications 5 177-230 (1994), Prometheus Publ. House Prague. (1994) Zbl0872.46020MR1322313
  17. Trudinger, N. S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 473-484 (1967). (1967) Zbl0163.36402MR0216286
  18. Yudovich, V. I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Doklady 2 746-749 (1961). (1961) Zbl0144.14501

Citations in EuDML Documents

top
  1. Robert Černý, Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range
  2. Robert Černý, On generalized Moser-Trudinger inequalities without boundary condition
  3. Robert Černý, Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces
  4. Robert Černý, Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
  5. Robert Černý, Sharp generalized Trudinger inequalities via truncation for embedding into multiple exponential spaces
  6. Robert Černý, Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains
  7. Robert Černý, Generalized n -Laplacian: semilinear Neumann problem with the critical growth

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.