A generalization of Čech-complete spaces and Lindelöf Σ -spaces

Aleksander V. Arhangel'skii

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 121-139
  • ISSN: 0010-2628

Abstract

top
The class of s -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf p -spaces, metrizable spaces with the weight 2 ω , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that s -spaces are in a duality with Lindelöf Σ -spaces: X is an s -space if and only if some (every) remainder of X in a compactification is a Lindelöf Σ -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight and the networkweight coincide for all s -spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily s -spaces, provide various sufficient conditions for a space to be a hereditarily s -space, and establish that every metrizable space has a dense subspace which is a hereditarily s -space. It is also shown that every dense-in-itself compact hereditarily s -space is metrizable.

How to cite

top

Arhangel'skii, Aleksander V.. "A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 121-139. <http://eudml.org/doc/252528>.

@article{Arhangelskii2013,
abstract = {The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\le 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable.},
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metrizable; Lindelöf $p$-space; Lindelöf $\Sigma $-space; remainder; compactification; $\sigma $-space; countable network; countable type; perfect mapping; Lindelöf -space; Lindelöf -space; remainder; compactification; -space; countable network; perfect mapping},
language = {eng},
number = {2},
pages = {121-139},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces},
url = {http://eudml.org/doc/252528},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 121
EP - 139
AB - The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\le 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable.
LA - eng
KW - metrizable; Lindelöf $p$-space; Lindelöf $\Sigma $-space; remainder; compactification; $\sigma $-space; countable network; countable type; perfect mapping; Lindelöf -space; Lindelöf -space; remainder; compactification; -space; countable network; perfect mapping
UR - http://eudml.org/doc/252528
ER -

References

top
  1. Arhangel'skii A.V., External bases of sets lying in bicompacta, Dokl. Akad. Nauk SSSR 132 (1960), 495–496. English translation: Soviet Math. Dokl. 1 (1960), 573–574. MR0119188
  2. Arhangel'skii A.V., On a class of spaces containing all metric spaces and all locally bicompact spaces, Dokl. Akad. Nauk SSSR 151 (1963), 751–754. English translation: Soviet Math. Dokl. 4 (1963), 1051–1055. MR0152988
  3. Arhangel'skii A.V., Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9–12. MR0150733
  4. Arhangel'skii A.V., Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obsch. 13 (1965), 3–55 (in Russian). English translation: Trans. Mosc. Math. Soc. 13 (1965), 1–62. MR0195046
  5. Arhangel'skii A.V., Perfect maps and injections, Dokl. Akad. Nauk SSSR 176 (1967), 983–986. English translation: Soviet Math. Dokl. 8 (1967), 1217–1220. MR0238276
  6. Arhangel'skii A.V., A characterization of very k -spaces, Czechoslovak Math. J. 18 (1968), 392–395. MR0229194
  7. Arhangel'skii A.V., On a class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55–88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR0190889
  8. Arhangel'skii A.V., 10.1016/0016-660X(73)90028-7, General Topology and Appl. 3 (1973), no. 1, 39–46. MR0319142DOI10.1016/0016-660X(73)90028-7
  9. Arhangelskii A.V., Relations among the invariants of topological groups and their subspaces, Uspekhi Mat. Nauk 35 (1980), no. 3, 3–22 (in Russian). English translation: Russian Math. Surveys 35 (1980), no. 3, 1–23. MR0580615
  10. A.V. Arhangel'skii, 10.1016/j.topol.2004.10.015, Topology and Appl. 150 (2005), 79-90. Zbl1075.54012MR2133669DOI10.1016/j.topol.2004.10.015
  11. Arhangel'skii A.V., Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119–126. MR2433629
  12. Arhangel'skii A.V., 10.4064/fm215-1-5, Fund. Math. 215 (2011), 87–100. Zbl1236.54006MR2851703DOI10.4064/fm215-1-5
  13. Arhangel'skii A.V., 10.4064/fm220-1-4, Fund. Math. 220 (2013), 71–81. DOI10.4064/fm220-1-4
  14. Arhangel'skii A.V., Bella A., 10.2307/2160537, Proc. Amer. Math. Soc. 119 (1993), no. 3, 947–954. MR1185277DOI10.2307/2160537
  15. Arhangel'skii A.V., Choban M.M., 10.1016/j.topol.2011.05.012, Topology Appl. 158 (2011), 1381–1389. Zbl1229.54036MR2812490DOI10.1016/j.topol.2011.05.012
  16. Arhangel'skii A.V., Holsztynski W., Sur les reseaux dans les espaces topologiques, Bull. Acad. Polon. Sci., Ser. Math. 11 (1963), 493–497 (in French). MR0159300
  17. Burke D.K., Covering properties, in: Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984, pp. 347–422. Zbl0569.54022MR0776628
  18. van Douwen E.K., Tall F., Weiss W., Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl0356.54020MR0514998
  19. Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
  20. Grabner G., Szymanski A., 10.1007/BF02844629, Rend. Circ. Mat. Palermo (2) 42 (1993), 382–390. Zbl0802.54019MR1283352DOI10.1007/BF02844629
  21. Henriksen M., Isbell J.R., 10.1215/S0012-7094-58-02509-2, Duke Math. J. 25 (1958), 83–106. Zbl0081.38604MR0096196DOI10.1215/S0012-7094-58-02509-2
  22. Hodel R.E., 10.4153/CJM-1975-054-8, Canad. J. Math. 27 (1975), no. 2, 459–468. Zbl0301.54010MR0375205DOI10.4153/CJM-1975-054-8
  23. Nagami K., Σ -spaces, Fund. Math. 61 (1969), 169–192. Zbl0181.50701MR0257963
  24. Popov V., 10.1016/0016-660X(77)90004-6, General Topology and Appl. 7 (1977), 31–33. MR0431093DOI10.1016/0016-660X(77)90004-6
  25. Pytkeev E.G., 10.1007/BF01140139, Math. Notes 28 (1980), no. 4, 603–618. Zbl0462.54018MR0594378DOI10.1007/BF01140139
  26. Velichko N.V., Theory of resolvable spaces, Mat. Zametki 19 (1976), no. 1, 19–114. English translation: Math. Notes 19 (1976), no. 1, 65–68. Zbl0346.54007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.