A generalization of Čech-complete spaces and Lindelöf -spaces
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 121-139
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArhangel'skii, Aleksander V.. "A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 121-139. <http://eudml.org/doc/252528>.
@article{Arhangelskii2013,
abstract = {The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\le 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable.},
author = {Arhangel'skii, Aleksander V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metrizable; Lindelöf $p$-space; Lindelöf $\Sigma $-space; remainder; compactification; $\sigma $-space; countable network; countable type; perfect mapping; Lindelöf -space; Lindelöf -space; remainder; compactification; -space; countable network; perfect mapping},
language = {eng},
number = {2},
pages = {121-139},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces},
url = {http://eudml.org/doc/252528},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Arhangel'skii, Aleksander V.
TI - A generalization of Čech-complete spaces and Lindelöf $\Sigma $-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 121
EP - 139
AB - The class of $s$-spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf $p$-spaces, metrizable spaces with the weight $\le 2^\omega $, but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that $s$-spaces are in a duality with Lindelöf $\Sigma $-spaces: $X$ is an $s$-space if and only if some (every) remainder of $X$ in a compactification is a Lindelöf $\Sigma $-space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013), 71–81]. A basic fact is established: the weight and the networkweight coincide for all $s$-spaces. This theorem generalizes the similar statement about Čech-complete spaces. We also study hereditarily $s$-spaces, provide various sufficient conditions for a space to be a hereditarily $s$-space, and establish that every metrizable space has a dense subspace which is a hereditarily $s$-space. It is also shown that every dense-in-itself compact hereditarily $s$-space is metrizable.
LA - eng
KW - metrizable; Lindelöf $p$-space; Lindelöf $\Sigma $-space; remainder; compactification; $\sigma $-space; countable network; countable type; perfect mapping; Lindelöf -space; Lindelöf -space; remainder; compactification; -space; countable network; perfect mapping
UR - http://eudml.org/doc/252528
ER -
References
top- Arhangel'skii A.V., External bases of sets lying in bicompacta, Dokl. Akad. Nauk SSSR 132 (1960), 495–496. English translation: Soviet Math. Dokl. 1 (1960), 573–574. MR0119188
- Arhangel'skii A.V., On a class of spaces containing all metric spaces and all locally bicompact spaces, Dokl. Akad. Nauk SSSR 151 (1963), 751–754. English translation: Soviet Math. Dokl. 4 (1963), 1051–1055. MR0152988
- Arhangel'skii A.V., Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9–12. MR0150733
- Arhangel'skii A.V., Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obsch. 13 (1965), 3–55 (in Russian). English translation: Trans. Mosc. Math. Soc. 13 (1965), 1–62. MR0195046
- Arhangel'skii A.V., Perfect maps and injections, Dokl. Akad. Nauk SSSR 176 (1967), 983–986. English translation: Soviet Math. Dokl. 8 (1967), 1217–1220. MR0238276
- Arhangel'skii A.V., A characterization of very -spaces, Czechoslovak Math. J. 18 (1968), 392–395. MR0229194
- Arhangel'skii A.V., On a class of spaces containing all metric and all locally compact spaces, Mat. Sb. 67(109) (1965), 55–88. English translation: Amer. Math. Soc. Transl. 92 (1970), 1–39. MR0190889
- Arhangel'skii A.V., 10.1016/0016-660X(73)90028-7, General Topology and Appl. 3 (1973), no. 1, 39–46. MR0319142DOI10.1016/0016-660X(73)90028-7
- Arhangelskii A.V., Relations among the invariants of topological groups and their subspaces, Uspekhi Mat. Nauk 35 (1980), no. 3, 3–22 (in Russian). English translation: Russian Math. Surveys 35 (1980), no. 3, 1–23. MR0580615
- A.V. Arhangel'skii, 10.1016/j.topol.2004.10.015, Topology and Appl. 150 (2005), 79-90. Zbl1075.54012MR2133669DOI10.1016/j.topol.2004.10.015
- Arhangel'skii A.V., Two types of remainders of topological groups, Comment. Math. Univ. Carolin. 49 (2008), no. 1, 119–126. MR2433629
- Arhangel'skii A.V., 10.4064/fm215-1-5, Fund. Math. 215 (2011), 87–100. Zbl1236.54006MR2851703DOI10.4064/fm215-1-5
- Arhangel'skii A.V., 10.4064/fm220-1-4, Fund. Math. 220 (2013), 71–81. DOI10.4064/fm220-1-4
- Arhangel'skii A.V., Bella A., 10.2307/2160537, Proc. Amer. Math. Soc. 119 (1993), no. 3, 947–954. MR1185277DOI10.2307/2160537
- Arhangel'skii A.V., Choban M.M., 10.1016/j.topol.2011.05.012, Topology Appl. 158 (2011), 1381–1389. Zbl1229.54036MR2812490DOI10.1016/j.topol.2011.05.012
- Arhangel'skii A.V., Holsztynski W., Sur les reseaux dans les espaces topologiques, Bull. Acad. Polon. Sci., Ser. Math. 11 (1963), 493–497 (in French). MR0159300
- Burke D.K., Covering properties, in: Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan, eds., North-Holland, Amsterdam, 1984, pp. 347–422. Zbl0569.54022MR0776628
- van Douwen E.K., Tall F., Weiss W., Non-metrizable hereditarily Lindelöf spaces with point-countable bases from CH, Proc. Amer. Math. Soc. 64 (1977), 139–145. Zbl0356.54020MR0514998
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Grabner G., Szymanski A., 10.1007/BF02844629, Rend. Circ. Mat. Palermo (2) 42 (1993), 382–390. Zbl0802.54019MR1283352DOI10.1007/BF02844629
- Henriksen M., Isbell J.R., 10.1215/S0012-7094-58-02509-2, Duke Math. J. 25 (1958), 83–106. Zbl0081.38604MR0096196DOI10.1215/S0012-7094-58-02509-2
- Hodel R.E., 10.4153/CJM-1975-054-8, Canad. J. Math. 27 (1975), no. 2, 459–468. Zbl0301.54010MR0375205DOI10.4153/CJM-1975-054-8
- Nagami K., -spaces, Fund. Math. 61 (1969), 169–192. Zbl0181.50701MR0257963
- Popov V., 10.1016/0016-660X(77)90004-6, General Topology and Appl. 7 (1977), 31–33. MR0431093DOI10.1016/0016-660X(77)90004-6
- Pytkeev E.G., 10.1007/BF01140139, Math. Notes 28 (1980), no. 4, 603–618. Zbl0462.54018MR0594378DOI10.1007/BF01140139
- Velichko N.V., Theory of resolvable spaces, Mat. Zametki 19 (1976), no. 1, 19–114. English translation: Math. Notes 19 (1976), no. 1, 65–68. Zbl0346.54007
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.