Displaying similar documents to “A generalization of Čech-complete spaces and Lindelöf Σ -spaces”

H-closed extensions with countable remainder

Daniel K. McNeill (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This paper investigates necessary and sufficient conditions for a space to have an H-closed extension with countable remainder. For countable spaces we are able to give two characterizations of those spaces admitting an H-closed extension with countable remainder. The general case is more difficult, however, we arrive at a necessary condition — a generalization of Čech completeness, and several sufficient conditions for a space to have an H-closed extension with countable remainder....

𝒫 -approximable compact spaces

Mihail G. Tkachenko (1991)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every topological property 𝒫 , we define the class of 𝒫 -approximable spaces which consists of spaces X having a countable closed cover γ such that the “section” X ( x , γ ) = { F γ : x F } has the property 𝒫 for each x X . It is shown that every 𝒫 -approximable compact space has 𝒫 , if 𝒫 is one of the following properties: countable tightness, 0 -scatteredness with respect to character, C -closedness, sequentiality (the last holds under MA or 2 0 < 2 1 ). Metrizable-approximable spaces are studied: every compact space in...

On monotone Lindelöfness of countable spaces

Ronnie Levy, Mikhail Matveev (2008)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space is monotonically Lindelöf (mL) if one can assign to every open cover 𝒰 a countable open refinement r ( 𝒰 ) so that r ( 𝒰 ) refines r ( 𝒱 ) whenever 𝒰 refines 𝒱 . We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable.