Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface
Mathematica Bohemica (2013)
- Volume: 138, Issue: 2, page 185-224
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDruet, Pierre-Etienne. "Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface." Mathematica Bohemica 138.2 (2013): 185-224. <http://eudml.org/doc/252531>.
@article{Druet2013,
abstract = {We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that the second weak derivatives remain integrable to a certain power less than two.},
author = {Druet, Pierre-Etienne},
journal = {Mathematica Bohemica},
keywords = {elliptic transmission problem; regularity theory; Lipschitz continuity; elliptic transmission problem; regularity theory; Lipschitz continuity},
language = {eng},
number = {2},
pages = {185-224},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface},
url = {http://eudml.org/doc/252531},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Druet, Pierre-Etienne
TI - Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 2
SP - 185
EP - 224
AB - We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that the second weak derivatives remain integrable to a certain power less than two.
LA - eng
KW - elliptic transmission problem; regularity theory; Lipschitz continuity; elliptic transmission problem; regularity theory; Lipschitz continuity
UR - http://eudml.org/doc/252531
ER -
References
top- Bacuta, C., Mazzucato, A. L., Nistor, V., Zikatanov, L., Interface and mixed boundary value problems on -dimensional polyhedral domains, Doc. Math., J. DMV 15 687-745 (2010). (2010) Zbl1207.35117MR2735986
- Elschner, J., Rehberg, J., Schmidt, G., Optimal regularity for elliptic transmission problems including interfaces, Interfaces Free Bound. 9 233-252 (2007). (2007) MR2314060
- Gilbarg, D., Trudinger, N. S., Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed, Classics in Mathematics. Springer, Berlin (2001). (2001) Zbl1042.35002MR1814364
- Haller-Dintelmann, R., Kaiser, H.-C., Rehberg, J., 10.1016/j.matpur.2007.09.001, J. Math. Pures Appl. (9) 89 25-48 (2008). (2008) Zbl1132.35022MR2378088DOI10.1016/j.matpur.2007.09.001
- Kufner, A., John, O., Fučík, S., Function Spaces, Academia, Praha (1977). (1977) MR0482102
- Ladyzhenskaya, O. A., Ural'tseva, N. N., Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engeneering 46. Academic Press. New York (1968). (1968) Zbl0177.37404MR0244627
- Ladyzhenskaya, O. A., Rivkind, V. Ya., Ural'tseva, N. N., The classical solvability of diffraction problems, Tr. Mat. Inst. Steklova 92 116-146 (1966), Russian. (1966) Zbl0165.11802MR0211050
- Ladyzhenskaya, O. A., Solonnikov, V. A., Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid, Tr. Mat. Inst. Steklova 59 115-173 (1960), Russian. (1960) MR0170130
- Li, Y. Y., Vogelius, M., 10.1007/s002050000082, Arch. Ration. Mech. Anal. 153 91-151 (2000). (2000) Zbl0958.35060MR1770682DOI10.1007/s002050000082
- Lions, J. L., Magenes, E., Problèmes aux limites non homogènes. IV, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 15 311-326 (1961), French. (1961) Zbl0115.31302MR0140938
- Lions, J. L., Magenes, E., Inhomogenous Boundary Problems and Applications. Vol. 1, 2, Dunod, Paris (1968), French. (1968)
- Mercier, D., 10.1002/mma.356, Math. Methods Appl. Sci. 26 321-348 (2003). (2003) Zbl1035.35035MR1953299DOI10.1002/mma.356
- Nicaise, S., Sändig, A.-M., 10.1142/S0218202599000403, Math. Models Methods Appl. Sci. 9 855-898 (1999). (1999) Zbl0958.35023MR1702865DOI10.1142/S0218202599000403
- Savaré, G., 10.1006/jfan.1997.3158, J. Funct. Anal. 152 176-201 (1998). (1998) MR1600081DOI10.1006/jfan.1997.3158
- Stampacchia, G., Su un probleme relativo alle equazioni di tipo ellitico del secondo ordine, Ricerche Mat. 5 1-24 (1956), Italian. (1956) MR0082607
- Stampacchia, G., 10.5802/aif.204, Ann. Inst. Fourier 15 189-257 (1965), French Colloques Int. Centre Nat. Rech. Sci. 146 189-258 (1965). (1965) Zbl0151.15401MR0192177DOI10.5802/aif.204
- Troianiello, G. M., Elliptic Differential Equations and Obstacle Problems, The University Series in Mathematics. Plenum Press, New York (1987). (1987) Zbl0655.35002MR1094820
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.