A poset of topologies on the set of real numbers

Vitalij A. Chatyrko; Yasunao Hattori

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 2, page 189-196
  • ISSN: 0010-2628

Abstract

top
On the set of real numbers we consider a poset 𝒫 τ ( ) (by inclusion) of topologies τ ( A ) , where A , such that A 1 A 2 iff τ ( A 1 ) τ ( A 2 ) . The poset has the minimal element τ ( ) , the Euclidean topology, and the maximal element τ ( ) , the Sorgenfrey topology. We are interested when two topologies τ 1 and τ 2 (especially, for τ 2 = τ ( ) ) from the poset define homeomorphic spaces ( , τ 1 ) and ( , τ 2 ) . In particular, we prove that for a closed subset A of the space ( , τ ( A ) ) is homeomorphic to the Sorgenfrey line ( , τ ( ) ) iff A is countable. We study also common properties of the spaces ( , τ ( A ) ) , A .

How to cite

top

Chatyrko, Vitalij A., and Hattori, Yasunao. "A poset of topologies on the set of real numbers." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 189-196. <http://eudml.org/doc/252542>.

@article{Chatyrko2013,
abstract = {On the set $\mathbb \{R\}$ of real numbers we consider a poset $\mathcal \{P\}_\tau (\mathbb \{R\})$ (by inclusion) of topologies $\tau (A)$, where $A\subseteq \mathbb \{R\}$, such that $A_1\supseteq A_2$ iff $\tau (A_1)\subseteq \tau (A_2)$. The poset has the minimal element $\tau (\mathbb \{R\})$, the Euclidean topology, and the maximal element $\tau (\emptyset )$, the Sorgenfrey topology. We are interested when two topologies $\tau _1$ and $\tau _2$ (especially, for $\tau _2 = \tau (\emptyset )$) from the poset define homeomorphic spaces $(\mathbb \{R\}, \tau _1)$ and $(\mathbb \{R\}, \tau _2)$. In particular, we prove that for a closed subset $A$ of $\mathbb \{R\}$ the space $(\mathbb \{R\}, \tau (A))$ is homeomorphic to the Sorgenfrey line $(\mathbb \{R\}, \tau (\emptyset ))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb \{R\}, \tau (A)), A\subseteq \mathbb \{R\}$.},
author = {Chatyrko, Vitalij A., Hattori, Yasunao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sorgenfrey line; poset of topologies on the set of real numbers; Sorgenfrey line; poset of topologies},
language = {eng},
number = {2},
pages = {189-196},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A poset of topologies on the set of real numbers},
url = {http://eudml.org/doc/252542},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Chatyrko, Vitalij A.
AU - Hattori, Yasunao
TI - A poset of topologies on the set of real numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 189
EP - 196
AB - On the set $\mathbb {R}$ of real numbers we consider a poset $\mathcal {P}_\tau (\mathbb {R})$ (by inclusion) of topologies $\tau (A)$, where $A\subseteq \mathbb {R}$, such that $A_1\supseteq A_2$ iff $\tau (A_1)\subseteq \tau (A_2)$. The poset has the minimal element $\tau (\mathbb {R})$, the Euclidean topology, and the maximal element $\tau (\emptyset )$, the Sorgenfrey topology. We are interested when two topologies $\tau _1$ and $\tau _2$ (especially, for $\tau _2 = \tau (\emptyset )$) from the poset define homeomorphic spaces $(\mathbb {R}, \tau _1)$ and $(\mathbb {R}, \tau _2)$. In particular, we prove that for a closed subset $A$ of $\mathbb {R}$ the space $(\mathbb {R}, \tau (A))$ is homeomorphic to the Sorgenfrey line $(\mathbb {R}, \tau (\emptyset ))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb {R}, \tau (A)), A\subseteq \mathbb {R}$.
LA - eng
KW - Sorgenfrey line; poset of topologies on the set of real numbers; Sorgenfrey line; poset of topologies
UR - http://eudml.org/doc/252542
ER -

References

top
  1. Aarts J.M., Lutzer D.J., Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974), 48pp. Zbl0296.54027MR0380745
  2. Chaber J., Pol R., Completeness, in Encyclopedia of General Topology, Elsevier, 2004, pp. 251–254. 
  3. Chatyrko V.A., Nyagaharwa V., On the families of sets without the Baire property generated by Vitali sets, P-Adic Numbers Ultrametric Anal. Appl. 3 (2011), no. 2, 100–107. MR2802033
  4. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  5. Espelie M.S., Joseph J.E., 10.2307/2689459, Math. Magazine 49 (1976), 250–251. MR0418038DOI10.2307/2689459
  6. Hattori Y., Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. Zbl1196.54048MR2650132
  7. van Mill J., The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001. Zbl0969.54003
  8. Moore J.T., Tasting the curious behavior of the Sorgenfrey line, Master of Arts Thesis, Miami University, Oxford, OH, 1996. 
  9. Levine N., 10.2307/2312781, Amer. Math. Monthly 70 (1963), 36–41. Zbl0113.16304MR0166752DOI10.2307/2312781
  10. Tkachuk V.V., A C p Theory Problem Book. Topological and Function Spaces, Springer, New York, Dordrecht, Heidelberg, London, 2011. Zbl1222.54002MR3024898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.