A poset of topologies on the set of real numbers
Vitalij A. Chatyrko; Yasunao Hattori
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 2, page 189-196
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topChatyrko, Vitalij A., and Hattori, Yasunao. "A poset of topologies on the set of real numbers." Commentationes Mathematicae Universitatis Carolinae 54.2 (2013): 189-196. <http://eudml.org/doc/252542>.
@article{Chatyrko2013,
abstract = {On the set $\mathbb \{R\}$ of real numbers we consider a poset $\mathcal \{P\}_\tau (\mathbb \{R\})$ (by inclusion) of topologies $\tau (A)$, where $A\subseteq \mathbb \{R\}$, such that $A_1\supseteq A_2$ iff $\tau (A_1)\subseteq \tau (A_2)$. The poset has the minimal element $\tau (\mathbb \{R\})$, the Euclidean topology, and the maximal element $\tau (\emptyset )$, the Sorgenfrey topology. We are interested when two topologies $\tau _1$ and $\tau _2$ (especially, for $\tau _2 = \tau (\emptyset )$) from the poset define homeomorphic spaces $(\mathbb \{R\}, \tau _1)$ and $(\mathbb \{R\}, \tau _2)$. In particular, we prove that for a closed subset $A$ of $\mathbb \{R\}$ the space $(\mathbb \{R\}, \tau (A))$ is homeomorphic to the Sorgenfrey line $(\mathbb \{R\}, \tau (\emptyset ))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb \{R\}, \tau (A)), A\subseteq \mathbb \{R\}$.},
author = {Chatyrko, Vitalij A., Hattori, Yasunao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sorgenfrey line; poset of topologies on the set of real numbers; Sorgenfrey line; poset of topologies},
language = {eng},
number = {2},
pages = {189-196},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A poset of topologies on the set of real numbers},
url = {http://eudml.org/doc/252542},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Chatyrko, Vitalij A.
AU - Hattori, Yasunao
TI - A poset of topologies on the set of real numbers
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 2
SP - 189
EP - 196
AB - On the set $\mathbb {R}$ of real numbers we consider a poset $\mathcal {P}_\tau (\mathbb {R})$ (by inclusion) of topologies $\tau (A)$, where $A\subseteq \mathbb {R}$, such that $A_1\supseteq A_2$ iff $\tau (A_1)\subseteq \tau (A_2)$. The poset has the minimal element $\tau (\mathbb {R})$, the Euclidean topology, and the maximal element $\tau (\emptyset )$, the Sorgenfrey topology. We are interested when two topologies $\tau _1$ and $\tau _2$ (especially, for $\tau _2 = \tau (\emptyset )$) from the poset define homeomorphic spaces $(\mathbb {R}, \tau _1)$ and $(\mathbb {R}, \tau _2)$. In particular, we prove that for a closed subset $A$ of $\mathbb {R}$ the space $(\mathbb {R}, \tau (A))$ is homeomorphic to the Sorgenfrey line $(\mathbb {R}, \tau (\emptyset ))$ iff $A$ is countable. We study also common properties of the spaces $(\mathbb {R}, \tau (A)), A\subseteq \mathbb {R}$.
LA - eng
KW - Sorgenfrey line; poset of topologies on the set of real numbers; Sorgenfrey line; poset of topologies
UR - http://eudml.org/doc/252542
ER -
References
top- Aarts J.M., Lutzer D.J., Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974), 48pp. Zbl0296.54027MR0380745
- Chaber J., Pol R., Completeness, in Encyclopedia of General Topology, Elsevier, 2004, pp. 251–254.
- Chatyrko V.A., Nyagaharwa V., On the families of sets without the Baire property generated by Vitali sets, P-Adic Numbers Ultrametric Anal. Appl. 3 (2011), no. 2, 100–107. MR2802033
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Espelie M.S., Joseph J.E., 10.2307/2689459, Math. Magazine 49 (1976), 250–251. MR0418038DOI10.2307/2689459
- Hattori Y., Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. Zbl1196.54048MR2650132
- van Mill J., The Infinite-Dimensional Topology of Function Spaces, Elsevier, Amsterdam, 2001. Zbl0969.54003
- Moore J.T., Tasting the curious behavior of the Sorgenfrey line, Master of Arts Thesis, Miami University, Oxford, OH, 1996.
- Levine N., 10.2307/2312781, Amer. Math. Monthly 70 (1963), 36–41. Zbl0113.16304MR0166752DOI10.2307/2312781
- Tkachuk V.V., A Theory Problem Book. Topological and Function Spaces, Springer, New York, Dordrecht, Heidelberg, London, 2011. Zbl1222.54002MR3024898
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.