The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A poset of topologies on the set of real numbers”

Addition theorems for dense subspaces

Aleksander V. Arhangel'skii (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space X which is the union of two dense metrizable subspaces need not be a p -space. However, if a normal space X is the union of a finite family μ of dense subspaces each of which is metrizable by a complete metric, then X is also metrizable...

Topologies on groups determined by right cancellable ultrafilters

Igor V. Protasov (2009)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For every discrete group G , the Stone-Čech compactification β G of G has a natural structure of a compact right topological semigroup. An ultrafilter p G * , where G * = β G G , is called right cancellable if, given any q , r G * , q p = r p implies q = r . For every right cancellable ultrafilter p G * , we denote by G ( p ) the group G endowed with the strongest left invariant topology in which p converges to the identity of G . For any countable group G and any right cancellable ultrafilters p , q G * , we show that G ( p ) is homeomorphic to G ( q ) if...

A compact Hausdorff topology that is a T₁-complement of itself

Dmitri Shakhmatov, Michael Tkachenko (2002)

Fundamenta Mathematicae

Similarity:

Topologies τ₁ and τ₂ on a set X are called T₁-complementary if τ₁ ∩ τ₂ = X∖F: F ⊆ X is finite ∪ ∅ and τ₁∪τ₂ is a subbase for the discrete topology on X. Topological spaces ( X , τ X ) and ( Y , τ Y ) are called T₁-complementary provided that there exists a bijection f: X → Y such that τ X and f - 1 ( U ) : U τ Y are T₁-complementary topologies on X. We provide an example of a compact Hausdorff space of size 2 which is T₁-complementary to itself ( denotes the cardinality of the continuum). We prove that the existence of a compact...

Compacta are maximally G δ -resolvable

István Juhász, Zoltán Szentmiklóssy (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is well-known that compacta (i.e. compact Hausdorff spaces) are maximally resolvable, that is every compactum X contains Δ ( X ) many pairwise disjoint dense subsets, where Δ ( X ) denotes the minimum size of a non-empty open set in X . The aim of this note is to prove the following analogous result: Every compactum X contains Δ δ ( X ) many pairwise disjoint G δ -dense subsets, where Δ δ ( X ) denotes the minimum size of a non-empty G δ set in X .