Cores and shells of graphs
Mathematica Bohemica (2013)
- Volume: 138, Issue: 1, page 43-59
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBickle, Allan. "Cores and shells of graphs." Mathematica Bohemica 138.1 (2013): 43-59. <http://eudml.org/doc/252548>.
@article{Bickle2013,
abstract = {The $k$-core of a graph $G$, $C_\{k\}(G)$, is the maximal induced subgraph $H\subseteq G$ such that $\delta (G)\ge k$, if it exists. For $k>0$, the $k$-shell of a graph $G$ is the subgraph of $G$ induced by the edges contained in the $k$-core and not contained in the $(k+1)$-core. The core number of a vertex is the largest value for $k$ such that $v\in C_\{k\}(G)$, and the maximum core number of a graph, $\widehat\{C\}(G)$, is the maximum of the core numbers of the vertices of $G$. A graph $G$ is $k$-monocore if $\widehat\{C\}(G)=\delta (G)=k$. This paper discusses some basic results on the structure of $k$-cores and $k$-shells. In particular, an operation characterization of 2-monocore graphs is proven. Some applications of cores and shells to graph coloring and domination are considered.},
author = {Bickle, Allan},
journal = {Mathematica Bohemica},
keywords = {$k$-core; $k$-shell; monocore; coloring; domination; structural aspects of graphs; -core; maximal induced subgraph; -shell; monocore; coloring; domination; core number; monocore graphs},
language = {eng},
number = {1},
pages = {43-59},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cores and shells of graphs},
url = {http://eudml.org/doc/252548},
volume = {138},
year = {2013},
}
TY - JOUR
AU - Bickle, Allan
TI - Cores and shells of graphs
JO - Mathematica Bohemica
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 138
IS - 1
SP - 43
EP - 59
AB - The $k$-core of a graph $G$, $C_{k}(G)$, is the maximal induced subgraph $H\subseteq G$ such that $\delta (G)\ge k$, if it exists. For $k>0$, the $k$-shell of a graph $G$ is the subgraph of $G$ induced by the edges contained in the $k$-core and not contained in the $(k+1)$-core. The core number of a vertex is the largest value for $k$ such that $v\in C_{k}(G)$, and the maximum core number of a graph, $\widehat{C}(G)$, is the maximum of the core numbers of the vertices of $G$. A graph $G$ is $k$-monocore if $\widehat{C}(G)=\delta (G)=k$. This paper discusses some basic results on the structure of $k$-cores and $k$-shells. In particular, an operation characterization of 2-monocore graphs is proven. Some applications of cores and shells to graph coloring and domination are considered.
LA - eng
KW - $k$-core; $k$-shell; monocore; coloring; domination; structural aspects of graphs; -core; maximal induced subgraph; -shell; monocore; coloring; domination; core number; monocore graphs
UR - http://eudml.org/doc/252548
ER -
References
top- M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T. Miyasato, Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, et al., Prediction of protein functions based on -cores of protein-protein interaction networks and amino acid sequences, Genome Informatics 14 (2003), 498-499. (2003)
- Alvarez-Hamelin, J., Dall'Asta, L., Barrat, A., Vespignani, A., -core decomposition: a tool for the visualization of large scale networks, Advances in Neural Information Processing Systems 18 (2006), 41. (2006)
- Bader, G., Hogue, C., 10.1186/1471-2105-4-2, BMC Bioinformatics 4 (2003). (2003) DOI10.1186/1471-2105-4-2
- Batagelj, V., Zaversnik, M., An algorithm for cores decomposition of networks, Unpublished manuscript: http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/cores.pdf (2003). (2003)
- Bickle, A., 10.7151/dmgt.1637, Discuss. Math., Graph Theory 32 (2012), 659-676. (2012) MR2993514DOI10.7151/dmgt.1637
- Bickle, A., The -Cores of a Graph, Ph.D. Dissertation, Western Michigan University (2010). (2010) MR2827272
- Bickle, A., Phillips, B., -Tone colorings of graphs, Submitted.
- Bollobas, B., Extremal Graph Theory, Academic Press (1978). (1978) Zbl0419.05031MR0506522
- Caro, Y., Roditty, Y., On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985), 167-180. (1985) Zbl0623.05031MR0824858
- Caro, Y., Roditty, Y., 10.1155/S016117129000031X, J. Math. Math. Sci. 13 (1990), 205-206. (1990) MR1038667DOI10.1155/S016117129000031X
- Chartrand, G., Lesniak, L., Graphs and Digraphs (4th ed.), Chapman & Hall, Bocca Raton, FL (2005). (2005) Zbl1057.05001MR2107429
- Chartrand, G., Zhang, P., Chromatic Graph Theory, Chapman & Hall, Bocca Raton, FL (2009). (2009) Zbl1169.05001MR2450569
- Coffman, W. C., Hakimi, S. L., Schmeichel, E., 10.1016/S0012-365X(02)00569-1, Discrete Math. 263 (2003), 47-59. (2003) Zbl1014.05023MR1955714DOI10.1016/S0012-365X(02)00569-1
- Dirac, G. A., 10.1112/jlms/s1-27.1.85, J. Lond. Math. Soc. 27 (1952), 85-92. (1952) Zbl0046.41001MR0045371DOI10.1112/jlms/s1-27.1.85
- Dirac, G. A., 10.1007/BF01361708, Math Ann. 153 (1964), 69-80. (1964) MR0160203DOI10.1007/BF01361708
- Erdős, P., Rubin, A., Taylor, H., Choosability in graphs, Combinatorics, Graph Theory and Computing, Proc. West Coast Conf., Arcata/Calif., 1979 Utilitas Mathematica Publishing, Winnipeg (1980), 125-157. (1980) MR0593902
- Gaertler, M., Patrignani, M., Dynamic analysis of the autonomous system graph, Proc. 2nd International Workshop on Inter-Domain Performance and Simulation (2004), 13-24. (2004)
- Haynes, T. W., Hedetniemi, S. T., Slater, P. J., Fundamentals of Domination in Graphs, Marcel Dekker, New York (1998). (1998) Zbl0890.05002MR1605684
- Jianxiang, C., Minyong, S., Sohn, M. Young, Xudong, Y., Domination in graphs of minimum degree six, J. Appl. Math. & Informatics 26 (2008), 1085-1100. (2008) MR2532884
- Lick, D. R., White, A. T., 10.4153/CJM-1970-125-1, Canad. J. Math. 22 (1970), 1082-1096. (1970) Zbl0202.23502MR0266812DOI10.4153/CJM-1970-125-1
- Łuczak, T., 10.1016/0012-365X(91)90162-U, Discrete Math. 91 (1991), 61-68. (1991) Zbl0752.05046MR1120887DOI10.1016/0012-365X(91)90162-U
- McCuaig, W., Shepherd, B., 10.1002/jgt.3190130610, J. Graph Theory 13 (1989), 749-762. (1989) Zbl0708.05058MR1025896DOI10.1002/jgt.3190130610
- Ore, O., Theory of Graphs, Amer. Math. Soc. Colloq. Publ., Vol. 38, Amer. Math. Soc., Providence, RI (1962). (1962) Zbl0105.35401MR0150753
- Reed, B., 10.1017/S0963548300002042, Combin. Probab. Comput. 5 (1996), 277-295. (1996) Zbl0857.05052MR1411088DOI10.1017/S0963548300002042
- Schwenk, A. J., Wilson, R. J., Eigenvalues of graphs, Selected Topics in Graph Theory L. W. Beineke, R. J. Wilson Academic Press, London (1978), 307-336. (1978)
- Seidman, S. B., 10.1016/0378-8733(83)90028-X, Social Networks 5 (1983), 269-287. (1983) MR0721295DOI10.1016/0378-8733(83)90028-X
- Sohn, M. Y., Xudong, Y., 10.4134/JKMS.2009.46.4.759, J. Korean Math. Soc. 46 (2009), 759-773. (2009) MR2532884DOI10.4134/JKMS.2009.46.4.759
- Szekeras, G., Wilf, H. S., 10.1016/S0021-9800(68)80081-X, J. Comb. Th. 4 (1968), 1-3. (1968) MR0218269DOI10.1016/S0021-9800(68)80081-X
- West, D., Introduction to Graph Theory, (2nd ed.), Prentice Hall of India, New Delhi (2001). (2001) MR1367739
- Wilf, H. S., 10.1112/jlms/s1-42.1.330, J. Lond. Math. Soc. 42 (1967), 330-332. (1967) Zbl0144.45202MR0207593DOI10.1112/jlms/s1-42.1.330
- Wuchty, S., Almaas, E., 10.1002/pmic.200400962, Proteomics 5 (2005), 444-449. (2005) DOI10.1002/pmic.200400962
- Xing, H., Sun, L., Chen, X., 10.1007/s00373-006-0638-3, Graph. Combinator. 22 (2006), 127-143. (2006) Zbl1091.05054MR2221014DOI10.1007/s00373-006-0638-3
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.