Degree Sequences of Monocore Graphs

Allan Bickle

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 3, page 585-592
  • ISSN: 2083-5892

Abstract

top
A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .

How to cite

top

Allan Bickle. "Degree Sequences of Monocore Graphs." Discussiones Mathematicae Graph Theory 34.3 (2014): 585-592. <http://eudml.org/doc/268316>.

@article{AllanBickle2014,
abstract = {A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min \{n − 1, k + n − i\} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .},
author = {Allan Bickle},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {monocore graph; degeneracy; degree sequence},
language = {eng},
number = {3},
pages = {585-592},
title = {Degree Sequences of Monocore Graphs},
url = {http://eudml.org/doc/268316},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Allan Bickle
TI - Degree Sequences of Monocore Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 3
SP - 585
EP - 592
AB - A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .
LA - eng
KW - monocore graph; degeneracy; degree sequence
UR - http://eudml.org/doc/268316
ER -

References

top
  1. [1] M. Altaf-Ul-Amin, K. Nishikata, T. Koma, T.Miyasato, Y. Shinbo, M. Arifuzzaman, C. Wada, M. Maeda, et al., Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences, Genome Informatics 14 (2003) 498-499. 
  2. [2] J. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, A. Vespignani, k-core decomposition: a tool for the visualization of large scale networks, Adv. Neural Inf. Process. Syst. 18 (2006) 41. 
  3. [3] G. Bader, C. Hogue, An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics 4 (2003). doi:10.1186/1471-2105-4-2[Crossref][PubMed] 
  4. [4] V. Batagelj and M. Zaversnik, An O(m) algorithm for cores decomposition of net- works. http://vlado.fmf.uni-lj.si/pub/networks/doc/cores/cores.pdf. (2002) Last accessed November 25, 2011. 
  5. [5] A. Bickle, The k-cores of a Graph (Ph.D. Dissertation, Western Michigan University, 2010). 
  6. [6] A. Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 (2012) 659-676. doi:10.7151/dmgt.1637[Crossref] Zbl1293.05313
  7. [7] A. Bickle, Cores and shells of graphs, Math. Bohemica 138 (2013) 43-59. Zbl1274.05399
  8. [8] B. Bollobas, Extremal Graph Theory (Academic Press, 1978). 
  9. [9] M. Borowiecki, J. Ivanˇco, P. Mih´ok and G. Semaniˇsin, Sequences realizable by max- imal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124. doi:10.1002/jgt.3190190112[Crossref] 
  10. [10] G. Chartrand and L. Lesniak, Graphs and Digraphs, (4th Ed.) (CRC Press, 2005). Zbl1057.05001
  11. [11] S. Dorogovtsev, A. Goltsev and J. Mendes, k-core organization of complex networks, Phys. Rev. Lett. 96 (2006).[PubMed][Crossref] Zbl1130.94024
  12. [12] Z. Filáková, P. Mihók and G. Semaniˇsin., A note on maximal k-degenerate graphs, Math. Slovaca 47 (1997) 489-498. 
  13. [13] M. Gaertler and M. Patrignani, Dynamic analysis of the autonomous system graph, Proc. 2nd International Workshop on Inter-Domain Performance and Simulation (2004) 13-24. 
  14. [14] D.R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096. doi:10.4153/CJM-1970-125-1[Crossref] Zbl0202.23502
  15. [15] T. Luczak, Size and connectivity of the k-core of a random graph, Discrete Math. 91 (1991) 61-68. doi:10.1016/0012-365X(91)90162-U[Crossref] 
  16. [16] J. Mitchem, Maximal k-degenerate graphs, Util. Math. 11 (1977) 101-106. Zbl0348.05109
  17. [17] S.B. Seidman, Network structure and minimum degree, Soc. Networks 5 (1983) 269-287. doi:10.1016/0378-8733(83)90028-X[Crossref] 
  18. [18] J.M.S. Simões-Pereira, A survey of k-degenerate graphs, Graph Theory Newsletter 5 (1976) 1-7. Zbl0331.05135
  19. [19] D. West, Introduction to Graph Theory, (2nd Ed.) (Prentice Hall, 2001). 
  20. [20] S. Wuchty and E. Almaas, Peeling the yeast protein network, Proteomics 5 (2005) 444-449. doi:10.1002/pmic.200400962 [Crossref][PubMed] 

NotesEmbed ?

top

You must be logged in to post comments.