Mixture decompositions of exponential families using a decomposition of their sample spaces
Kybernetika (2013)
- Volume: 49, Issue: 1, page 23-39
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMontúfar, Guido F.. "Mixture decompositions of exponential families using a decomposition of their sample spaces." Kybernetika 49.1 (2013): 23-39. <http://eudml.org/doc/252551>.
@article{Montúfar2013,
abstract = {We study the problem of finding the smallest $m$ such that every element of an exponential family can be written as a mixture of $m$ elements of another exponential family. We propose an approach based on coverings and packings of the face lattice of the corresponding convex support polytopes and results from coding theory. We show that $m=q^\{N-1\}$ is the smallest number for which any distribution of $N$$q$-ary variables can be written as mixture of $m$ independent $q$-ary variables. Furthermore, we show that any distribution of $N$ binary variables is a mixture of $m = 2^\{N-(k+1)\}(1+ 1/(2^k-1))$ elements of the $k$-interaction exponential family.},
author = {Montúfar, Guido F.},
journal = {Kybernetika},
keywords = {mixture model; non-negative tensor rank; perfect code; marginal polytope; mixture model; non-negative tensor rank; perfect code; marginal polytope},
language = {eng},
number = {1},
pages = {23-39},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Mixture decompositions of exponential families using a decomposition of their sample spaces},
url = {http://eudml.org/doc/252551},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Montúfar, Guido F.
TI - Mixture decompositions of exponential families using a decomposition of their sample spaces
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 1
SP - 23
EP - 39
AB - We study the problem of finding the smallest $m$ such that every element of an exponential family can be written as a mixture of $m$ elements of another exponential family. We propose an approach based on coverings and packings of the face lattice of the corresponding convex support polytopes and results from coding theory. We show that $m=q^{N-1}$ is the smallest number for which any distribution of $N$$q$-ary variables can be written as mixture of $m$ independent $q$-ary variables. Furthermore, we show that any distribution of $N$ binary variables is a mixture of $m = 2^{N-(k+1)}(1+ 1/(2^k-1))$ elements of the $k$-interaction exponential family.
LA - eng
KW - mixture model; non-negative tensor rank; perfect code; marginal polytope; mixture model; non-negative tensor rank; perfect code; marginal polytope
UR - http://eudml.org/doc/252551
ER -
References
top- Amari, S., Information geometry on hierarchical decomposition of stochastic interactions., IEEE Trans. Inform. Theory 47 (1999), 1701-1711.
- Amari, S., Nagaoka, H., Methods of information geometry, Vol. 191., Oxford University Press, 2000. Translations of mathematical monographs. MR1800071
- Ay, N., Knauf, A., Maximizing multi-information., Kybernetika 42 (2006), 517-538. Zbl1249.82011MR2283503
- Ay, N., Montúfar, G. F., Rauh, J., Selection criteria for neuromanifolds of stochastic dynamics., In: Advances in Cognitive Neurodynamics (III). Springer, 2011.
- Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics)., Springer-Verlag, New York 2006. MR2247587
- Bocci, C., Chiantini, L., On the identifiability of binary segre products., J. Algebraic Geom. 5 (2011).
- Brown, L., Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory., Institute of Mathematical Statistics, Hayworth 1986. Zbl0685.62002MR0882001
- Catalisano, M. V., Geramita, A. V., Gimigliano, A., 10.1090/S1056-3911-10-00537-0, J. Algebraic Geom. 20 (2011), 295-327. MR2762993DOI10.1090/S1056-3911-10-00537-0
- Diaconis, P., 10.1007/BF00486116, Synthese 36 (1977), 271-281. Zbl0397.60005MR0517222DOI10.1007/BF00486116
- Efron, B., 10.1214/aos/1176344130, Ann. Statist. 6 (1978), 2, 362-376. Zbl0436.62027MR0471152DOI10.1214/aos/1176344130
- Cohen, S. L. G., Honkala, I., Lobstein, A., Covering Codes., Elsevier, 1997. Zbl0874.94001
- Gale, D., Neighborly and cyclic polytopes., In: Convexity: Proc. Seventh Symposium in Pure Mathematics of the American Mathematical Society 1961, pp. 225-233. Zbl0137.41801MR0152944
- Gawrilow, E., Joswig, M., Polymake: a framework for analyzing convex polytopes., In: Polytopes - Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), Birkhäuser 2000, pp. 43-74. Zbl0960.68182MR1785292
- Geiger, D., Meek, C., Sturmfels, B., 10.1214/009053606000000263, Ann. Statist. 34 (2006), 1463-1492. Zbl1104.60007MR2278364DOI10.1214/009053606000000263
- Gilbert, E., A comparison of signalling alphabets., Bell System Techn. J. 31 (1052), 504-522.
- Gilula, Z., 10.1093/biomet/66.2.339, Biometrika 66 (1979), 2, 339-344. Zbl0411.62003MR0548203DOI10.1093/biomet/66.2.339
- Grünbaum, B., Convex Polytopes. Second edition., Springer-Verlag, New York 2003. MR1976856
- Henk, M., Richter-Gebert, J., Ziegler, G. M., Basic Properties of Convex Polytopes., CRC Press, Boca Raton 1997. Zbl0911.52007MR1730169
- Hoşten, S., Sullivant, S., 10.1006/jcta.2002.3301, J. Combin. Theory Ser. A 100 (2002), 2, 277-301. Zbl1044.62065MR1940337DOI10.1006/jcta.2002.3301
- Kahle, T., Neighborliness of marginal polytopes., Contrib. Algebra Geometry 51 (2010), 45-56. Zbl1238.60012MR2650476
- Kahle, T., Ay, N., Support sets of distributions with given interaction structure., In: Proc. WUPES'06, 2006.
- Kahle, T., Wenzel, W., Ay, N., Hierarchical models, marginal polytopes, and linear codes., Kybernetika 45 (2009), 189-208. Zbl1167.94340MR2518148
- Kalai, G., Some aspects of the combinatorial theory of convex polytopes., 1993. Zbl0804.52006MR1322063
- Kingman, J. F. C., 10.1214/aop/1176995566, Ann. Probab. 6 (1978), 2, 183-197. Zbl0374.60064MR0494344DOI10.1214/aop/1176995566
- Lindsay, B. G., Mixture models: theory, geometry, and applications., NSF-CBMS Regional Conference Series in Probability and Statistics. Institute of Mathematical Statistics, 1995. Zbl1163.62326
- McLachlan, G., Peel, D., Finite Mixture Models., Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, 2000. Zbl0963.62061MR1789474
- Montúfar, G. F., Ay, N., 10.1162/NECO_a_00113, Neural Comput. 23 (2011), 5, 1306-1319. MR2814846DOI10.1162/NECO_a_00113
- Montúfar, G. F., Rauh, J., Ay, N., Expressive power and approximation errors of restricted Boltzmann machines., In: Advances in Neural Information Processing Systems 24 (J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds.), MIT Press, 2011, pp. 415-423.
- Rauh, J., Finding the Maximizers of the Information Divergence from an Exponential Family., Ph. D. Thesis, Universität Leipzig, 2011. MR2817016
- Rauh, J., Kahle, T., Ay, N., 10.1016/j.ijar.2011.01.013, Internat. J. Approximate Reasoning 52 (2011), 5, 613-626. MR2787021DOI10.1016/j.ijar.2011.01.013
- Settimi, R., Smith, J. Q., On the geometry of Bayesian graphical models with hidden variables., In: Proc. Fourteenth conference on Uncertainty in artificial intelligence, UAI'98, Morgan Kaufmann Publishers 1998, pp. 472-479.
- Shemer., I., 10.1007/BF02761235, Israel J. Math. 43 (1982), 291-311. Zbl1223.52005MR0693351DOI10.1007/BF02761235
- Titterington, D., Smith, A. F. M., Makov, U. E., Statistical Analysis of Finite Mixture Distributions., John Wiley and Sons, 1985. Zbl0646.62013MR0838090
- Varshamov, R., Estimate of the number of signals in error correcting codes., Dokl. Akad. Nauk SSSR 117 (1957), 739-741.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.