Maximizing multi–information
Kybernetika (2006)
- Volume: 42, Issue: 5, page 517-538
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAy, Nihat, and Knauf, Andreas. "Maximizing multi–information." Kybernetika 42.5 (2006): 517-538. <http://eudml.org/doc/33822>.
@article{Ay2006,
abstract = {Stochastic interdependence of a probability distribution on a product space is measured by its Kullback–Leibler distance from the exponential family of product distributions (called multi-information). Here we investigate low-dimensional exponential families that contain the maximizers of stochastic interdependence in their closure. Based on a detailed description of the structure of probability distributions with globally maximal multi-information we obtain our main result: The exponential family of pure pair-interactions contains all global maximizers of the multi-information in its closure.},
author = {Ay, Nihat, Knauf, Andreas},
journal = {Kybernetika},
keywords = {multi-information; exponential family; relative entropy; pair- interaction; infomax principle; Boltzmann machine; neural networks; multi-information; relative entropy; pair-interaction; infomax principle; Boltzmann machine; neural networks},
language = {eng},
number = {5},
pages = {517-538},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Maximizing multi–information},
url = {http://eudml.org/doc/33822},
volume = {42},
year = {2006},
}
TY - JOUR
AU - Ay, Nihat
AU - Knauf, Andreas
TI - Maximizing multi–information
JO - Kybernetika
PY - 2006
PB - Institute of Information Theory and Automation AS CR
VL - 42
IS - 5
SP - 517
EP - 538
AB - Stochastic interdependence of a probability distribution on a product space is measured by its Kullback–Leibler distance from the exponential family of product distributions (called multi-information). Here we investigate low-dimensional exponential families that contain the maximizers of stochastic interdependence in their closure. Based on a detailed description of the structure of probability distributions with globally maximal multi-information we obtain our main result: The exponential family of pure pair-interactions contains all global maximizers of the multi-information in its closure.
LA - eng
KW - multi-information; exponential family; relative entropy; pair- interaction; infomax principle; Boltzmann machine; neural networks; multi-information; relative entropy; pair-interaction; infomax principle; Boltzmann machine; neural networks
UR - http://eudml.org/doc/33822
ER -
References
top- Aarts E., Korst J., Simulated Annealing and Boltzmann Machines, Wiley, New York 1989 Zbl0674.90059MR0983115
- Ackley D. H., Hinton G. E., Sejnowski T. J., 10.1207/s15516709cog0901_7, Cognitive Science 9 (1985), 147–169 (1985) DOI10.1207/s15516709cog0901_7
- Aigner M., Combinatorial Theory, Classics in Mathematics, Springer–Verlag, Berlin 1997 MR1434477
- Amari S., 10.1109/18.930911, IEEE Trans. Inform. Theory 47 (2001), 1701–1711 Zbl0997.94009MR1842511DOI10.1109/18.930911
- Amari S., Kurata, K., Nagaoka H., 10.1109/72.125867, IEEE Trans. Neural Networks 3 (1992), 2, 260–271 (1992) DOI10.1109/72.125867
- Ay N., 10.1214/aop/1020107773, Ann. Probab. 30 (2002), 416–436 Zbl1010.62007MR1894113DOI10.1214/aop/1020107773
- Ay N., 10.1162/089976602760805368, Neural Computation 14 (2002), 2959–2980 Zbl1079.68582DOI10.1162/089976602760805368
- Linsker R., 10.1109/2.36, IEEE Computer 21 (1988), 105–117 (1988) DOI10.1109/2.36
- Matúš F., Ay N., On maximization of the information divergence from an exponential family, In: Proc. WUPES’03 (J. Vejnarová, ed.), University of Economics, Prague 2003, pp. 199–204
- Shannon C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell System Tech. J. 27 (1948), 379–423, 623–656 (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Tononi G., Sporns, O., Edelman G. M., 10.1073/pnas.91.11.5033, Proc. Nat. Acad. Sci. U. S. A. 91 (1994), 5033–5037 (1994) DOI10.1073/pnas.91.11.5033
Citations in EuDML Documents
top- František Matúš, Optimality conditions for maximizers of the information divergence from an exponential family
- Thomas Kahle, Walter Wenzel, Nihat Ay, Hierarchical models, marginal polytopes, and linear codes
- Thomas Merkh, Guido F. Montúfar, Factorized mutual information maximization
- Guido F. Montúfar, Mixture decompositions of exponential families using a decomposition of their sample spaces
- Johannes Rauh, František Matúš, Maximizing the Bregman divergence from a Bregman family
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.