# Decentralized design of interconnected ${H}_{\infty}$ feedback control systems with quantized signals

Guisheng Zhai; Ning Chen; Weihua Gui

International Journal of Applied Mathematics and Computer Science (2013)

- Volume: 23, Issue: 2, page 317-325
- ISSN: 1641-876X

## Access Full Article

top## Abstract

top## How to cite

topGuisheng Zhai, Ning Chen, and Weihua Gui. "Decentralized design of interconnected $H_∞$ feedback control systems with quantized signals." International Journal of Applied Mathematics and Computer Science 23.2 (2013): 317-325. <http://eudml.org/doc/257112>.

@article{GuishengZhai2013,

abstract = {In this paper, we consider the design of interconnected $H_∞$ feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired $H_∞$ disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same $H_∞$ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.},

author = {Guisheng Zhai, Ning Chen, Weihua Gui},

journal = {International Journal of Applied Mathematics and Computer Science},

keywords = {interconnected systems; decentralized $H_∞$ control; dynamic output feedback; quantizer; quantization; matrix inequality; LMI; decentralized control},

language = {eng},

number = {2},

pages = {317-325},

title = {Decentralized design of interconnected $H_∞$ feedback control systems with quantized signals},

url = {http://eudml.org/doc/257112},

volume = {23},

year = {2013},

}

TY - JOUR

AU - Guisheng Zhai

AU - Ning Chen

AU - Weihua Gui

TI - Decentralized design of interconnected $H_∞$ feedback control systems with quantized signals

JO - International Journal of Applied Mathematics and Computer Science

PY - 2013

VL - 23

IS - 2

SP - 317

EP - 325

AB - In this paper, we consider the design of interconnected $H_∞$ feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired $H_∞$ disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating the parameters of the quantizers, so that the overall closed-loop system is asymptotically stable and achieves the same $H_∞$ disturbance attenuation level. Both the pre-designed controllers and the parameters of the quantizers are constructed in a decentralized manner, depending on local measurement outputs.

LA - eng

KW - interconnected systems; decentralized $H_∞$ control; dynamic output feedback; quantizer; quantization; matrix inequality; LMI; decentralized control

UR - http://eudml.org/doc/257112

ER -

## References

top- Brockett, R.W. and Liberzon, D. (2000). Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control 45(7): 1279-1289. Zbl0988.93069
- Bushnell, L.G. (2001). Special section on networks & control, IEEE Control Systems Magazine 21(1): 22-99.
- Chen, N., Shen, X. and Gui, W. (2011a). Decentralized ${H}_{\infty}$ quantized dynamic output feedback control for uncertain interconnected networked systems, Proceedings of the 8th Asian Control Conference, Kaohsiung, Taiwan, pp. 131-136.
- Chen, W., Khan, A.Q., Abid, M. and Ding, S.X. (2011b). Integrated design of observer based fault detection for a class of uncertain nonlinear systems, International Journal of Applied Mathematics and Computer Science 21(3): 423-430, DOI: 10.2478/v10006-011-0031-0. Zbl1234.93036
- Delchamps, D.F. (1990). Stabilizing a linear system with quantized state feedback, IEEE Transactions on Automatic Control 35(8): 916-924. Zbl0719.93067
- Ikeda, M., Zhai, G. and Fujisaki, Y. (1996). Decentralized ${H}_{\infty}$ control for large-scale systems: A matrix inequality approach using a homotopy method, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 1-6.
- Ishii, H. and Francis, B. (2002). Limited Data Rate in Control Systems with Networks, Springer, Berlin. Zbl1001.93001
- Iwasaki, T., Skelton, R.E. and Grigoriadis, K.M. (1998). A Unified Algebraic Approach to Linear Control Design, Taylor & Francis, London.
- Liberzon, D. (2000). Nonlinear stabilization by hybrid quantized feedback, Proceedings of the 3rd International Workshop on Hybrid Systems: Computation and Control, Pittsburgh, PA, USA, pp. 243-257. Zbl0952.93109
- Liberzon, D. (2003). Hybrid feedback stabilization of systems with quantized signals, Automatica 39(9): 1543-1554. Zbl1030.93042
- Ling, Q. and Lemmon, M.D. (2010). A necessary and sufficient feedback dropout condition to stabilize quantized linear control systems with bounded noise, IEEE Transactions on Automatic Control 55(11): 2590-2596.
- Morawski, M. and Zajączkowski, A.M. (2010). Approach to the design of robust networked control systems, International Journal of Applied Mathematics and Computer Science 20(4): 689-698, DOI: 10.2478/v10006-010-0052-0.
- Murao, S., Zhai, G., Ikeda, M. and Tamaoki, K. (2002). Decentralized ${H}_{\infty}$ controller design: An LMI approach, Proceedings of the 41st SICE Annual Conference, Osaka, Japan, pp. 2734-2739.
- Tatikonda, S. and Mitter, S. (2004). Control under communication constraints, IEEE Transactions on Automatic Control 49(7): 1056-1068.
- Zhai, G., Chen, N. and Gui, W. (2010). Quantizer design for interconnected feedback control systems, Journal of Control Theory and Applications 8(1): 93-98.
- Zhai, G., Ikeda, M. and Fujisaki, Y. (2001). Decentralized ${H}_{\infty}$ controller design: A matrix inequality approach using a homotopy method, Automatica 37(4): 565-572. Zbl0982.93035
- Zhai, G., Matsumoto, Y., Chen, X. and Mi, Y. (2004). Hybrid stabilization of linear time-invariant systems with two quantizers, Proceedings of the 2004 IEEE International Symposium on Intelligent Control, Taipei, Taiwan, pp. 305-309.
- Zhai, G., Mi, Y., Imae, J. and Kobayashi, T. (2005). Design of ${H}_{\infty}$ feedback control systems with quantized signals, Preprints of the 16th IFAC World Congress, Prague, Czech Republic, Fr-M17-TO/1.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.