Decomposition of the fuzzy inference system for implementation in the FPGA structure

Bernard Wyrwoł; Edward Hrynkiewicz

International Journal of Applied Mathematics and Computer Science (2013)

  • Volume: 23, Issue: 2, page 473-483
  • ISSN: 1641-876X

Abstract

top
The paper presents the design and implementation of a digital rule-relational fuzzy logic controller. Classical and decomposed logical structures of fuzzy systems are discussed. The second allows a decrease in the hardware cost of the fuzzy system and in the computing time of the final result (fuzzy or crisp), especially when referring to relational systems. The physical architecture consists of IP modules implemented in an FPGA structure. The modules can be inserted into or removed from the project to get a desirable fuzzy logic controller configuration. The fuzzy inference system implemented in FPGA can operate with a much higher performance than software implementations on standard microcontrollers.

How to cite

top

Bernard Wyrwoł, and Edward Hrynkiewicz. "Decomposition of the fuzzy inference system for implementation in the FPGA structure." International Journal of Applied Mathematics and Computer Science 23.2 (2013): 473-483. <http://eudml.org/doc/257118>.

@article{BernardWyrwoł2013,
abstract = {The paper presents the design and implementation of a digital rule-relational fuzzy logic controller. Classical and decomposed logical structures of fuzzy systems are discussed. The second allows a decrease in the hardware cost of the fuzzy system and in the computing time of the final result (fuzzy or crisp), especially when referring to relational systems. The physical architecture consists of IP modules implemented in an FPGA structure. The modules can be inserted into or removed from the project to get a desirable fuzzy logic controller configuration. The fuzzy inference system implemented in FPGA can operate with a much higher performance than software implementations on standard microcontrollers.},
author = {Bernard Wyrwoł, Edward Hrynkiewicz},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {fuzzy logic; fuzzy inference algorithm; decomposition; digital fuzzy logic controller; FPGA},
language = {eng},
number = {2},
pages = {473-483},
title = {Decomposition of the fuzzy inference system for implementation in the FPGA structure},
url = {http://eudml.org/doc/257118},
volume = {23},
year = {2013},
}

TY - JOUR
AU - Bernard Wyrwoł
AU - Edward Hrynkiewicz
TI - Decomposition of the fuzzy inference system for implementation in the FPGA structure
JO - International Journal of Applied Mathematics and Computer Science
PY - 2013
VL - 23
IS - 2
SP - 473
EP - 483
AB - The paper presents the design and implementation of a digital rule-relational fuzzy logic controller. Classical and decomposed logical structures of fuzzy systems are discussed. The second allows a decrease in the hardware cost of the fuzzy system and in the computing time of the final result (fuzzy or crisp), especially when referring to relational systems. The physical architecture consists of IP modules implemented in an FPGA structure. The modules can be inserted into or removed from the project to get a desirable fuzzy logic controller configuration. The fuzzy inference system implemented in FPGA can operate with a much higher performance than software implementations on standard microcontrollers.
LA - eng
KW - fuzzy logic; fuzzy inference algorithm; decomposition; digital fuzzy logic controller; FPGA
UR - http://eudml.org/doc/257118
ER -

References

top
  1. Accellera (2002). System Verilog 3.1, www.eda.org/sv/SystemVerilog_3.1a.pdf. 
  2. Al-Aubidy, K.M. (2010). FPGA-based fuzzy inference system for real-time embedded applications, International Journal of Real-Time Systems 1(1): 9-15. 
  3. Atmel (2007). 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, 2503-avr-08/07 Edn., ATMEL, www.atmel.com/Images/doc2503.pdf. 
  4. Baturone, I., Sánchez-Solano, S., Barriga, A. and Huertas, J.L. (1997). Implementation of CMOS fuzzy controllers as mixed-signal integrated circuits, IEEE Transactions on Fuzzy Systems 5(1): 1-19. 
  5. Bhasker, J. (1998). Verilog HDL Synthesis a Practical Primer, Star Galaxy Publishing, Allentown, PA. 
  6. Chmiel, M. and Hrynkiewicz, E. (2008). Fast operating bit-byte PLC, 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 14810-14815. 
  7. Chojcan, J. and Łęski, J. (2001). Fuzzy Sets and Their Applications, Silesian University of Technology Press, Gliwice, (in Polish). 
  8. Czogała, E. and Łęski, J. (1998). An equivalence of inference results under defuzzification using both conjunction and logical implication interpretation of fuzzy if-then rules, 6th European Congress on Intelligent Techniques and Soft Computing, 1998, Aachen, Germany, pp. 83-92. 
  9. Czogała, E. and Pedrycz, W. (1985). Elements and Methods of Fuzzy Set Theory, Polish Scientific Publishers, PWN, Warsaw. Zbl0661.94029
  10. Di Nola, A., Pedrycz, W. and Sessa, S. (1984). Decomposition problem of fuzzy relations, International Journal of General Systems 10(2-3): 123-133. Zbl0559.04004
  11. Di Nola, A., Pedrycz, W. and Sessa, S. (1985). When is a fuzzy relation decomposable into two fuzzy set, Fuzzy Sets and Systems 16(1): 87-90. Zbl0576.08001
  12. Gupta, M.M., Kiszka, J.B. and Trojan, G.M. (1986). Multivariable structure of fuzzy control systems, IEEE Transactions on Systems, Man and Cybernetics 16(5): 638-656. Zbl0619.93044
  13. Hollstein, T., Halgamuge, S.K. and Glesner, M. (1996). Computer-aided design of fuzzy systems based on generic VHDL specifications, IEEE Transactions on Fuzzy Systems 4(4): 403-417. 
  14. Hrynkiewicz, E. and Wyrwoł, B. (2000). Hardware implementation of the FITA fuzzy logic inference systems, Design and Diagnostics of Electronic Circuits and Systems, DDECS, 2000, Smolenice, Slovakia, pp. 169-173. 
  15. Hung-Ping, C. and Parug, T.-M. (1996). A new approach of multi-stage fuzzy logic inference, Fuzzy Sets and Systems 78(1): 51-72. 
  16. Hurdon, H.D. (1993). The fuzzy logic expert fan controller, www.ecst.csuchico.edu/˜juliano/Fuzzy/fuzzyfan. 
  17. Kim, D. (2000). An implementation of fuzzy logic controller on the reconfigurable FPGA system, IEEE Transactions on Industrial Electronics 47(3): 703-715. 
  18. Kim, D. and Cho, I.-H. (1999). An accurate and cost-effective COG defuzzifier without the multiplier and the divider, Fuzzy Sets and Systems 104(2): 229-244. 
  19. Kovačić, Z. and Bogdan, S. (2006). Fuzzy Controller Design Theory and Applications, Taylor & Francis Group, LLC, New York, NY. Zbl1123.93001
  20. Lee, P.G., Kyun, K.L. and Jeon, G.J. (1995). An index of applicability for the decomposition method of multivariable fuzzy systems, IEEE Transactions on Fuzzy Systems 3(3): 364-369. 
  21. Martins, A.P. and Carvalho, A.S. (2001). Fuzzy controllers with reduced rulebases and real-time capability for power systems supervision, Electric Power Components and Systems 29(12): 1145-1159. 
  22. Minns, P. and Elliott, I. (2008). FSM-based Digital Design Using Verilog HDL, John Wiley & Sons, Ltd, New York, NY. 
  23. Ollero, A. and Garcia-Cerezo, A.J. (1989). Direct digital control, auto-tuning and supervision using fuzzy logic, Fuzzy Sets and Systems 30(2): 135-153. 
  24. Palnitkar, S. (1996). Verilog HDL: A Guide to Digital Design and Synthesis, SunSoft Press, Upper Saddle River, NJ. 
  25. Passino, K.M. and Yurkovich, S. (1998). Fuzzy Control, Addison-Wesley Longman, Inc., Menlo Park, CA. Zbl0925.93530
  26. Patyra, M.J., Gartner, J.L. and Koster, K. (1996). Digital fuzzy logic controller: Design and implementation, IEEE Transactions on Fuzzy Systems 4(4): 439-459. 
  27. Piegat, A. (2005). A new definition of the fuzzy set, International Journal of Applied Mathematics and Computer Science 15(1): 125-140. Zbl1070.68137
  28. Piegat, A. (2006). What is not clear in fuzzy control systems?, International Journal of Applied Mathematics and Computer Science 16(1): 37-49. Zbl1334.93109
  29. Rovatti, R., Guerrieri, R. and Baccarani, G. (1995). An enhanced two-level boolean synthesis methodology for fuzzy rules minimization, IEEE Transactions on Fuzzy Systems 3(3): 288-299. 
  30. Rutkowska, D., Piliński, M. and Rutkowski, L. (1997). Neural Networks, Genetic Algorithms and Fuzzy Systems, Polish Scientific Publishers, PWN, Warsaw. 
  31. Sakthivel, G., Anandhi, T.S. and Natarajan, S.P. (2010). Design of optimized fuzzy logic controller for area minimization and its FPGA implementation, International Journal of Computer Science and Network Security 10(8): 187-192. 
  32. Samsung Electronics (1998). K6T4008C1B Family, 3rd Edn., www.100y.com.tw/pdf_file/K6T4008C1B-GP70.pdf. 
  33. Siemens AG (1996). Simatic S7 - Fuzzy Control, User Manual. 
  34. Sulaiman, N., Obaid, Z.A., Marhaban, M.H. and Hamidon, M.N. (2009). FPGA-based fuzzy logic-design and applications: A review, International Journal of Engineering and Technology 1(5): 491-503. 
  35. Togai InfraLogic, Inc. (1991). FC 110 Digital Fuzzy Processor DFPTM, Irvine, CA. 
  36. Uppalapati, S. and Kaur, D. (2009). Design and implementation of a Mamdani fuzzy inference system on an FPGA, 28th North American Fuzzy Information Processing Society Annual Conference, NAFIPS2009, Cincinnati, OH, USA, pp. 1-6. 
  37. Walichiewicz, Ł. (1984). Decomposition of linguistic rules in the design of a multi-dimensional fuzzy control algorithm, Cybernetics and Systems Research, Vienna, Austria, Vol. 2, pp. 557-561. Zbl0538.93018
  38. Wyrwoł, B. (2004a). Hardware Implementation of the Fuzzy Inference System Using Programmable Logic Devices, Ph.D. thesis, Silesian University of Technology, Gliwice. 
  39. Wyrwoł, B. (2004b). Modular fuzzy inference system: Compact defuzzyfication module, 7th Conference on Reprogrammable Digital Circuits, RUC'2004, Szczecin, Poland, pp. 217-224. 
  40. Wyrwoł, B. (2008). Linguistic decomposition technique based on partitioning the knowledge base of the fuzzy inference system, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(1): 71-76. 
  41. Wyrwoł, B. (2011). Using graph greedy coloring algorithms in the hardware implementation of the HFIS fuzzy inference system, Electrical Review 87(10): 64-67. 
  42. Xilinx (2009). Synthesis and Simulation Design Guide, www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf. 
  43. Xilinx (2008). DS-001 Spartan II-2,5V FPGA Family, 2.8 Edn. www.xilinx.com/support/documentation/data_sheets/ds001.pdf. 
  44. Yager, R.R. and Filev, D.P. (1994). Essential of Fuzzy Modelling and Control, John Wiley and Sons, New York, NY. 
  45. Yamakawa, T. (1989). Stabilization of an inverted pendulum by a high-speed fuzzy logic controller hardware system, Fuzzy Sets and Systems 32(2): 161-180. 
  46. Zbysiński, P. and Pasierbiński, J. (1992). Programmable Devices-First Steps, BTC Publishing House, Warsaw. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.