Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 4, page 493-508
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBreit, Dominic. "Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 493-508. <http://eudml.org/doc/260584>.
@article{Breit2013,
abstract = {We discuss regularity results concerning local minimizers $u: \mathbb \{R\}^n\supset \Omega \rightarrow \mathbb \{R\}^n$ of variational integrals like \begin\{align*\} \int \_\{\Omega \}\lbrace F(\cdot ,\varepsilon (w))-f\cdot w\rbrace \,dx \end\{align*\}
defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^\{1,\alpha \}$ on an open subset $\Omega _\{0\}$ of $\Omega $ with full measure if $q< p\,\frac\{n+2\}\{n\}$ (for $n=2$ we have $\Omega _\{0\}=\Omega $). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.},
author = {Breit, Dominic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer; Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer},
language = {eng},
number = {4},
pages = {493-508},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials},
url = {http://eudml.org/doc/260584},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Breit, Dominic
TI - Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 493
EP - 508
AB - We discuss regularity results concerning local minimizers $u: \mathbb {R}^n\supset \Omega \rightarrow \mathbb {R}^n$ of variational integrals like \begin{align*} \int _{\Omega }\lbrace F(\cdot ,\varepsilon (w))-f\cdot w\rbrace \,dx \end{align*}
defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^{1,\alpha }$ on an open subset $\Omega _{0}$ of $\Omega $ with full measure if $q< p\,\frac{n+2}{n}$ (for $n=2$ we have $\Omega _{0}=\Omega $). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.
LA - eng
KW - Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer; Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer
UR - http://eudml.org/doc/260584
ER -
References
top- Acerbi E., Mingione G., 10.1007/s00205-002-0208-7, Arch. Rat. Mech. Anal 164 (2002), 213–259. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
- Breit D., Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen, PhD thesis, Saarland University, 2009.
- Breit D., 10.1007/s00526-011-0428-5, Calc. Var. 44 (2012), 101–129. Zbl1252.49060MR2898773DOI10.1007/s00526-011-0428-5
- Bildhauer M., Fuchs M., 10.1007/s00021-003-0072-8, J. Math. Fluid Mech. 5 (2003), 364–402. Zbl1072.76019MR2004292DOI10.1007/s00021-003-0072-8
- Bildhauer M., Fuchs M., 10.1007/s00526-005-0327-8, Calc. Var. 24 (2005), no. 3, 309–340. Zbl1101.49029MR2174429DOI10.1007/s00526-005-0327-8
- Bildhauer M., Fuchs M., 10.1007/s005260100090, Calc. Var. 13 (2001), 537–560. Zbl1018.49026MR1867941DOI10.1007/s005260100090
- Bildhauer M., Fuchs M., 10.1002/mma.527, Math. Methods Appl. Sci. 27 (2004), no. 13, 1607–1617. Zbl1058.76073MR2077446DOI10.1002/mma.527
- Bildhauer M., Fuchs M., Zhong X., 10.1007/s00229-004-0523-4, Manuscripta Math. 116 (2005), no. 2, 135–156. Zbl1116.49018MR2122416DOI10.1007/s00229-004-0523-4
- Cupini G., Guidorzi M., Mascolo E., 10.1016/S0362-546X(03)00087-7, Nonlinear Anal. 54 (2003), no. 4, 591-616. Zbl1027.49032MR1983438DOI10.1016/S0362-546X(03)00087-7
- Diening L., Ettwein F., Růžička M., 10.1007/s00030-007-5026-z, Nonlinear Differential Equations Appl. 14 (2007), no. 1–2, 207–217. Zbl1132.76301MR2346460DOI10.1007/s00030-007-5026-z
- Esposito L., Leonetti F., G. Mingione G., 10.1016/S0022-0396(04)00208-6, J. Differential Equations 204 (2004), 5–55. Zbl1072.49024MR2076158DOI10.1016/S0022-0396(04)00208-6
- Esposito L., Leonetti F., Mingione G., 10.1515/form.2002.011, Forum Mathematicum 14 (2002), 245–272. MR1880913DOI10.1515/form.2002.011
- Fuchs M., 10.1002/(SICI)1099-1476(199610)19:15<1225::AID-MMA827>3.0.CO;2-U, Math. Methods Appl. Sci. 19 (1996), 1225–1232. MR1410207DOI10.1002/(SICI)1099-1476(199610)19:15<1225::AID-MMA827>3.0.CO;2-U
- Fuchs M., Grotowski J., Reuling J., 10.1002/(SICI)1099-1476(199608)19:12<991::AID-MMA810>3.0.CO;2-R, Math. Methods Appl. Sci. 19 (1996), 991–1015. MR1402153DOI10.1002/(SICI)1099-1476(199608)19:12<991::AID-MMA810>3.0.CO;2-R
- Fuchs M., Seregin G., 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A, Math. Methods Appl. Sci. 22 (1999), 317–351. Zbl0928.76087MR1671448DOI10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A
- Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel-Boston-Berlin, 1993. Zbl0786.35001MR1239172
- Kaplický P., Málek J., Stará J., -solutions to a class of nonlinear fluids in two dimensions — stationary Dirichlet problem, Zap. Nauchn. Sem. POMI 259 (1999), 122–144. Zbl0978.35046
- Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York-London-Paris, 1969. Zbl0184.52603MR0254401
- Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure Valued Solutions to Evolutionary PDEs, Chapman & Hall, London-Weinheim-New York, 1996. Zbl0851.35002MR1409366
- Morrey C.B., Multiple integrals in the calculus of variations, Grundlehren der math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg, 1966. Zbl1213.49002MR2492985
- Naumann J., Wolf J., 10.1007/s00021-004-0120-z, J. Math. Fluid Mech. 7 (2005), 298–313. Zbl1070.35023MR2177130DOI10.1007/s00021-004-0120-z
- Růžička M., 10.1007/BFb0104030, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030
- Wolf J., Interior -regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B (8) 10 (2007), 317–340. MR2339444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.