Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials

Dominic Breit

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 4, page 493-508
  • ISSN: 0010-2628

Abstract

top
We discuss regularity results concerning local minimizers u : n Ω n of variational integrals like Ω { F ( · , ε ( w ) ) - f · w } d x defined on energy classes of solenoidal fields. For the potential F we assume a ( p , q ) -elliptic growth condition. In the situation without x -dependence it is known that minimizers are of class C 1 , α on an open subset Ω 0 of Ω with full measure if q < p n + 2 n (for n = 2 we have Ω 0 = Ω ). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.

How to cite

top

Breit, Dominic. "Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 493-508. <http://eudml.org/doc/260584>.

@article{Breit2013,
abstract = {We discuss regularity results concerning local minimizers $u: \mathbb \{R\}^n\supset \Omega \rightarrow \mathbb \{R\}^n$ of variational integrals like \begin\{align*\} \int \_\{\Omega \}\lbrace F(\cdot ,\varepsilon (w))-f\cdot w\rbrace \,dx \end\{align*\} defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^\{1,\alpha \}$ on an open subset $\Omega _\{0\}$ of $\Omega $ with full measure if $q< p\,\frac\{n+2\}\{n\}$ (for $n=2$ we have $\Omega _\{0\}=\Omega $). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.},
author = {Breit, Dominic},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer; Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer},
language = {eng},
number = {4},
pages = {493-508},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials},
url = {http://eudml.org/doc/260584},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Breit, Dominic
TI - Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 493
EP - 508
AB - We discuss regularity results concerning local minimizers $u: \mathbb {R}^n\supset \Omega \rightarrow \mathbb {R}^n$ of variational integrals like \begin{align*} \int _{\Omega }\lbrace F(\cdot ,\varepsilon (w))-f\cdot w\rbrace \,dx \end{align*} defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^{1,\alpha }$ on an open subset $\Omega _{0}$ of $\Omega $ with full measure if $q< p\,\frac{n+2}{n}$ (for $n=2$ we have $\Omega _{0}=\Omega $). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system.
LA - eng
KW - Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer; Stokes problem; generalized Newtonian fluids; regularity; nonautonomous functionals; local minimizer
UR - http://eudml.org/doc/260584
ER -

References

top
  1. Acerbi E., Mingione G., 10.1007/s00205-002-0208-7, Arch. Rat. Mech. Anal 164 (2002), 213–259. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
  2. Breit D., Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen, PhD thesis, Saarland University, 2009. 
  3. Breit D., 10.1007/s00526-011-0428-5, Calc. Var. 44 (2012), 101–129. Zbl1252.49060MR2898773DOI10.1007/s00526-011-0428-5
  4. Bildhauer M., Fuchs M., 10.1007/s00021-003-0072-8, J. Math. Fluid Mech. 5 (2003), 364–402. Zbl1072.76019MR2004292DOI10.1007/s00021-003-0072-8
  5. Bildhauer M., Fuchs M., 10.1007/s00526-005-0327-8, Calc. Var. 24 (2005), no. 3, 309–340. Zbl1101.49029MR2174429DOI10.1007/s00526-005-0327-8
  6. Bildhauer M., Fuchs M., 10.1007/s005260100090, Calc. Var. 13 (2001), 537–560. Zbl1018.49026MR1867941DOI10.1007/s005260100090
  7. Bildhauer M., Fuchs M., 10.1002/mma.527, Math. Methods Appl. Sci. 27 (2004), no. 13, 1607–1617. Zbl1058.76073MR2077446DOI10.1002/mma.527
  8. Bildhauer M., Fuchs M., Zhong X., 10.1007/s00229-004-0523-4, Manuscripta Math. 116 (2005), no. 2, 135–156. Zbl1116.49018MR2122416DOI10.1007/s00229-004-0523-4
  9. Cupini G., Guidorzi M., Mascolo E., 10.1016/S0362-546X(03)00087-7, Nonlinear Anal. 54 (2003), no. 4, 591-616. Zbl1027.49032MR1983438DOI10.1016/S0362-546X(03)00087-7
  10. Diening L., Ettwein F., Růžička M., 10.1007/s00030-007-5026-z, Nonlinear Differential Equations Appl. 14 (2007), no. 1–2, 207–217. Zbl1132.76301MR2346460DOI10.1007/s00030-007-5026-z
  11. Esposito L., Leonetti F., G. Mingione G., 10.1016/S0022-0396(04)00208-6, J. Differential Equations 204 (2004), 5–55. Zbl1072.49024MR2076158DOI10.1016/S0022-0396(04)00208-6
  12. Esposito L., Leonetti F., Mingione G., 10.1515/form.2002.011, Forum Mathematicum 14 (2002), 245–272. MR1880913DOI10.1515/form.2002.011
  13. Fuchs M., 10.1002/(SICI)1099-1476(199610)19:15<1225::AID-MMA827>3.0.CO;2-U, Math. Methods Appl. Sci. 19 (1996), 1225–1232. MR1410207DOI10.1002/(SICI)1099-1476(199610)19:15<1225::AID-MMA827>3.0.CO;2-U
  14. Fuchs M., Grotowski J., Reuling J., 10.1002/(SICI)1099-1476(199608)19:12<991::AID-MMA810>3.0.CO;2-R, Math. Methods Appl. Sci. 19 (1996), 991–1015. MR1402153DOI10.1002/(SICI)1099-1476(199608)19:12<991::AID-MMA810>3.0.CO;2-R
  15. Fuchs M., Seregin G., 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A, Math. Methods Appl. Sci. 22 (1999), 317–351. Zbl0928.76087MR1671448DOI10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A
  16. Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel-Boston-Berlin, 1993. Zbl0786.35001MR1239172
  17. Kaplický P., Málek J., Stará J., C 1 , α -solutions to a class of nonlinear fluids in two dimensions — stationary Dirichlet problem, Zap. Nauchn. Sem. POMI 259 (1999), 122–144. Zbl0978.35046
  18. Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York-London-Paris, 1969. Zbl0184.52603MR0254401
  19. Málek J., Nečas J., Rokyta M., Růžička M., Weak and Measure Valued Solutions to Evolutionary PDEs, Chapman & Hall, London-Weinheim-New York, 1996. Zbl0851.35002MR1409366
  20. Morrey C.B., Multiple integrals in the calculus of variations, Grundlehren der math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg, 1966. Zbl1213.49002MR2492985
  21. Naumann J., Wolf J., 10.1007/s00021-004-0120-z, J. Math. Fluid Mech. 7 (2005), 298–313. Zbl1070.35023MR2177130DOI10.1007/s00021-004-0120-z
  22. Růžička M., 10.1007/BFb0104030, Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl0968.76531MR1810360DOI10.1007/BFb0104030
  23. Wolf J., Interior C 1 , α -regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B (8) 10 (2007), 317–340. MR2339444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.