Interior -Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 2, page 317-340
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ADAMS, A, R.., Sobolev spaces. Academic Press, Boston1978. MR450957
- ASTARITA, G. - MARRUCCI, G.Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. Zbl0316.73001
- BATCHELOR, G. K., An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge1967. Zbl0152.44402MR1744638
- BIRD, R. B. - ARMSTRONG, R. C., HASSAGER, O.: Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York1987. MR830199
- GALDI, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York1994. Zbl0949.35004MR1284205DOI10.1007/978-1-4612-5364-8
- GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). Zbl0516.49003MR717034
- GIAQUINTA, M. - MODICA, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math.28 (1979), 109-158. Zbl0411.35018MR535699DOI10.1007/BF01647969
- GEHRING, F. W., integrability of the partial derivatives of a quasi conformal mapping. Acta. Math.130 (1973), 265- 277. Zbl0258.30021MR402038DOI10.1007/BF02392268
- KAPLICKÝ, P. - MÁLEK, J. - STARÁ, J., -solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI)259 (1999), 89-121. Zbl0978.35046MR1754359DOI10.1023/A:1014440207817
- LAMB, H., Hydrodynamics. 6th ed., Cambridge Univ. Press1945. MR1317348
- NAUMANN, J., On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. Zbl0664.35033MR964511DOI10.1007/BF01762796
- NAUMANN, J. - WOLF, J., On the interior regularity of weak solutions of degenerate elliptic system (the case ). Rend. Sem. Mat. Univ. Padova88 (1992), 55- 81. Zbl0818.35024MR1209116
- NAUMANN, J. - WOLF, J., Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. Zbl1070.35023MR2177130DOI10.1007/s00021-004-0120-z
- WILKINSON, W. L., Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York1960. Zbl0124.41802MR110392