# Interior ${C}^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions

Bollettino dell'Unione Matematica Italiana (2007)

- Volume: 10-B, Issue: 2, page 317-340
- ISSN: 0392-4041

## Access Full Article

top## Abstract

top## How to cite

topWolf, Jorg. "Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions." Bollettino dell'Unione Matematica Italiana 10-B.2 (2007): 317-340. <http://eudml.org/doc/290418>.

@article{Wolf2007,

abstract = {In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case $1 < q < 2$.},

author = {Wolf, Jorg},

journal = {Bollettino dell'Unione Matematica Italiana},

language = {eng},

month = {6},

number = {2},

pages = {317-340},

publisher = {Unione Matematica Italiana},

title = {Interior $C^\{1,\alpha\}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions},

url = {http://eudml.org/doc/290418},

volume = {10-B},

year = {2007},

}

TY - JOUR

AU - Wolf, Jorg

TI - Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions

JO - Bollettino dell'Unione Matematica Italiana

DA - 2007/6//

PB - Unione Matematica Italiana

VL - 10-B

IS - 2

SP - 317

EP - 340

AB - In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case $1 < q < 2$.

LA - eng

UR - http://eudml.org/doc/290418

ER -

## References

top- ADAMS, A, R.., Sobolev spaces. Academic Press, Boston1978. MR450957
- ASTARITA, G. - MARRUCCI, G.Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. Zbl0316.73001
- BATCHELOR, G. K., An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge1967. Zbl0152.44402MR1744638
- BIRD, R. B. - ARMSTRONG, R. C., HASSAGER, O.: Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York1987. MR830199
- GALDI, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York1994. Zbl0949.35004MR1284205DOI10.1007/978-1-4612-5364-8
- GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). Zbl0516.49003MR717034
- GIAQUINTA, M. - MODICA, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math.28 (1979), 109-158. Zbl0411.35018MR535699DOI10.1007/BF01647969
- GEHRING, F. W., ${L}^{p}$integrability of the partial derivatives of a quasi conformal mapping. Acta. Math.130 (1973), 265- 277. Zbl0258.30021MR402038DOI10.1007/BF02392268
- KAPLICKÝ, P. - MÁLEK, J. - STARÁ, J., ${C}^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI)259 (1999), 89-121. Zbl0978.35046MR1754359DOI10.1023/A:1014440207817
- LAMB, H., Hydrodynamics. 6th ed., Cambridge Univ. Press1945. MR1317348
- NAUMANN, J., On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. Zbl0664.35033MR964511DOI10.1007/BF01762796
- NAUMANN, J. - WOLF, J., On the interior regularity of weak solutions of degenerate elliptic system (the case $$). Rend. Sem. Mat. Univ. Padova88 (1992), 55- 81. Zbl0818.35024MR1209116
- NAUMANN, J. - WOLF, J., Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. Zbl1070.35023MR2177130DOI10.1007/s00021-004-0120-z
- WILKINSON, W. L., Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York1960. Zbl0124.41802MR110392

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.