Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 4, page 485-491
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAnello, Giovanni, and Rao, Giuseppe. "Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 485-491. <http://eudml.org/doc/260586>.
@article{Anello2013,
abstract = {Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta _p u = \lambda u^\{s-1\}+u^\{q-1\}$ in $\Omega $, $u_\{\mid \partial \Omega \}=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author.},
author = {Anello, Giovanni, Rao, Giuseppe},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities; elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities},
language = {eng},
number = {4},
pages = {485-491},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities},
url = {http://eudml.org/doc/260586},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Anello, Giovanni
AU - Rao, Giuseppe
TI - Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 485
EP - 491
AB - Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta _p u = \lambda u^{s-1}+u^{q-1}$ in $\Omega $, $u_{\mid \partial \Omega }=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author.
LA - eng
KW - elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities; elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities
UR - http://eudml.org/doc/260586
ER -
References
top- Anello G., On the Dirichlet problem involving the equation , Nonlinear Anal. 70 (2009), 2060–2066. MR2492142
- Anello G., 10.1007/s00605-010-0189-9, Monatsh. Math. 162 (2011), 1–18. Zbl1206.35135MR2747340DOI10.1007/s00605-010-0189-9
- Boccardo L., Escobedo M., Peral I., 10.1016/0362-546X(94)E0054-K, Nonlinear Anal. 24 (1995), no. 11, 1639–1648. MR1328589DOI10.1016/0362-546X(94)E0054-K
- Gedda M., Veron L., 10.1016/0362-546X(89)90020-5, Nonlinear Anal. 13 (1989), no. 8, 879–902. MR1009077DOI10.1016/0362-546X(89)90020-5
- Il'yasov Y., 10.1016/j.na.2004.10.022, Nonlinear Anal. 61 (2005), 211–236. Zbl1190.35112MR2122250DOI10.1016/j.na.2004.10.022
- Liebermann G.M., 10.1016/0362-546X(88)90053-3, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR0969499DOI10.1016/0362-546X(88)90053-3
- Moser J., 10.1002/cpa.3160130308, Comm. Pure Appl. Math. 13 (1960), 457–478. Zbl0111.09301MR0170091DOI10.1002/cpa.3160130308
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.