Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities

Giovanni Anello; Giuseppe Rao

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 4, page 485-491
  • ISSN: 0010-2628

Abstract

top
Let p > 1 , q > p , λ > 0 and s ] 1 , p [ . We study, for s p - , the behavior of positive solutions of the problem - Δ p u = λ u s - 1 + u q - 1 in Ω , u Ω = 0 . In particular, we give a positive answer to an open question formulated in a recent paper of the first author.

How to cite

top

Anello, Giovanni, and Rao, Giuseppe. "Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 485-491. <http://eudml.org/doc/260586>.

@article{Anello2013,
abstract = {Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta _p u = \lambda u^\{s-1\}+u^\{q-1\}$ in $\Omega $, $u_\{\mid \partial \Omega \}=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author.},
author = {Anello, Giovanni, Rao, Giuseppe},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities; elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities},
language = {eng},
number = {4},
pages = {485-491},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities},
url = {http://eudml.org/doc/260586},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Anello, Giovanni
AU - Rao, Giuseppe
TI - Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 485
EP - 491
AB - Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta _p u = \lambda u^{s-1}+u^{q-1}$ in $\Omega $, $u_{\mid \partial \Omega }=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author.
LA - eng
KW - elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities; elliptic boundary value problems; positive solutions; variational methods; asymptotic behavior; combined nonlinearities
UR - http://eudml.org/doc/260586
ER -

References

top
  1. Anello G., On the Dirichlet problem involving the equation - Δ p u = λ u s - 1 , Nonlinear Anal. 70 (2009), 2060–2066. MR2492142
  2. Anello G., 10.1007/s00605-010-0189-9, Monatsh. Math. 162 (2011), 1–18. Zbl1206.35135MR2747340DOI10.1007/s00605-010-0189-9
  3. Boccardo L., Escobedo M., Peral I., 10.1016/0362-546X(94)E0054-K, Nonlinear Anal. 24 (1995), no. 11, 1639–1648. MR1328589DOI10.1016/0362-546X(94)E0054-K
  4. Gedda M., Veron L., 10.1016/0362-546X(89)90020-5, Nonlinear Anal. 13 (1989), no. 8, 879–902. MR1009077DOI10.1016/0362-546X(89)90020-5
  5. Il'yasov Y., 10.1016/j.na.2004.10.022, Nonlinear Anal. 61 (2005), 211–236. Zbl1190.35112MR2122250DOI10.1016/j.na.2004.10.022
  6. Liebermann G.M., 10.1016/0362-546X(88)90053-3, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR0969499DOI10.1016/0362-546X(88)90053-3
  7. Moser J., 10.1002/cpa.3160130308, Comm. Pure Appl. Math. 13 (1960), 457–478. Zbl0111.09301MR0170091DOI10.1002/cpa.3160130308

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.