Extending the ideal of nowhere dense subsets of rationals to a P-ideal
Rafał Filipów; Nikodem Mrożek; Ireneusz Recław; Piotr Szuca
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 429-435
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFilipów, Rafał, et al. "Extending the ideal of nowhere dense subsets of rationals to a P-ideal." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 429-435. <http://eudml.org/doc/260589>.
@article{Filipów2013,
abstract = {We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma $ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals).},
author = {Filipów, Rafał, Mrożek, Nikodem, Recław, Ireneusz, Szuca, Piotr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {P-ideal; nowhere dense set; extension; analytic ideal; maximal ideal; meager ideal; ideal convergence; P-ideal; nowhere dense set; extension; analytic ideal; maximal ideal; meager ideal; ideal convergence},
language = {eng},
number = {3},
pages = {429-435},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Extending the ideal of nowhere dense subsets of rationals to a P-ideal},
url = {http://eudml.org/doc/260589},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Filipów, Rafał
AU - Mrożek, Nikodem
AU - Recław, Ireneusz
AU - Szuca, Piotr
TI - Extending the ideal of nowhere dense subsets of rationals to a P-ideal
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 429
EP - 435
AB - We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma $ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals).
LA - eng
KW - P-ideal; nowhere dense set; extension; analytic ideal; maximal ideal; meager ideal; ideal convergence; P-ideal; nowhere dense set; extension; analytic ideal; maximal ideal; meager ideal; ideal convergence
UR - http://eudml.org/doc/260589
ER -
References
top- Debs G., Saint Raymond J., 10.4064/fm204-3-1, Fund. Math. 204 (2009), no. 3, 189–213. Zbl1179.03046MR2520152DOI10.4064/fm204-3-1
- Dow A., The space of minimal prime ideals of is probably not basically disconnected, General Topology and Applications (Middletown, CT, 1988), Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990, pp. 81–86. MR1057626
- Filipów R., Mrożek N., Recław I., Szuca P., 10.2178/jsl/1185803621, J. Symbolic Logic 72 (2007), no. 2, 501–512. Zbl1123.40002MR2320288DOI10.2178/jsl/1185803621
- Jalali-Naini S.M., The monotone subsets of Cantor space, filters and descriptive set theory, PhD Thesis, Oxford, 1976.
- Laczkovich M., Recław I., 10.4064/fm203-1-3, Fund. Math. 203 (2009), no. 1, 39–46. Zbl1172.03025MR2491780DOI10.4064/fm203-1-3
- Laflamme C., Filter games and combinatorial properties of strategies, Set theory (Boise, ID, 1992–1994), Contemp. Math., 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51–67. Zbl0854.04004MR1367134
- Solecki S., 10.1016/S0168-0072(98)00051-7, Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72. Zbl0932.03060MR1708146DOI10.1016/S0168-0072(98)00051-7
- Talagrand M., Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), no. 1, 13–43. Zbl0435.46023MR0579439
- van Mill J., Reed G.M. (eds.), Open Problems in Topology, North-Holland Publishing Co., Amsterdam, 1990. Zbl0877.54001MR1078636
- Zapletal J., 10.4064/fm204-2-4, Fund. Math. 204 (2009), no. 2, 145–154. Zbl1174.03022MR2520149DOI10.4064/fm204-2-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.