Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Abstract Korovkin-type theorems in modular spaces and applications

Carlo Bardaro, Antonio Boccuto, Xenofon Dimitriou, Ilaria Mantellini (2013)

Open Mathematics

We prove some versions of abstract Korovkin-type theorems in modular function spaces, with respect to filter convergence for linear positive operators, by considering several kinds of test functions. We give some results with respect to an axiomatic convergence, including almost convergence. An extension to non positive operators is also studied. Finally, we give some examples and applications to moment and bivariate Kantorovich-type operators, showing that our results are proper extensions of the...

Dieudonné-type theorems for lattice group-valued k -triangular set functions

Antonio Boccuto, Xenofon Dimitriou (2019)

Kybernetika

Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for k -triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.

Extending the ideal of nowhere dense subsets of rationals to a P-ideal

Rafał Filipów, Nikodem Mrożek, Ireneusz Recław, Piotr Szuca (2013)

Commentationes Mathematicae Universitatis Carolinae

We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, F σ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals).

F-limit points in dynamical systems defined on the interval

Piotr Szuca (2013)

Open Mathematics

Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider...

Ideal version of Ramsey's theorem

Rafał Filipów, Nikodem Mrożek, Ireneusz Recław, Piotr Szuca (2011)

Czechoslovak Mathematical Journal

We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P....

Lacunary weak statistical convergence

Fatih Nuray (2011)

Mathematica Bohemica

The aim of this work is to generalize lacunary statistical convergence to weak lacunary statistical convergence and -convergence to weak -convergence. We start by defining weak lacunary statistically convergent and weak lacunary Cauchy sequence. We find a connection between weak lacunary statistical convergence and weak statistical convergence.

On ideal equal convergence

Rafał Filipów, Marcin Staniszewski (2014)

Open Mathematics

We consider ideal equal convergence of a sequence of functions. This is a generalization of equal convergence introduced by Császár and Laczkovich [Császár Á., Laczkovich M., Discrete and equal convergence, Studia Sci. Math. Hungar., 1975, 10(3–4), 463–472]. Our definition of ideal equal convergence encompasses two different kinds of ideal equal convergence introduced in [Das P., Dutta S., Pal S.K., On and *-equal convergence and an Egoroff-type theorem, Mat. Vesnik, 2014, 66(2), 165–177]_and [Filipów...

On the ideal convergence of sequences of quasi-continuous functions

Tomasz Natkaniec, Piotr Szuca (2016)

Fundamenta Mathematicae

For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.

Some generalizations of Olivier's theorem

Alain Faisant, Georges Grekos, Ladislav Mišík (2016)

Mathematica Bohemica

Let n = 1 a n be a convergent series of positive real numbers. L. Olivier proved that if the sequence ( a n ) is non-increasing, then lim n n a n = 0 . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having lim n n a n = 0 ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence of...

Statistical convergence of a sequence of random variables and limit theorems

Sanjoy Ghosal (2013)

Applications of Mathematics

In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order r and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.

Statistical convergence of sequences of functions with values in semi-uniform spaces

Dimitrios N. Georgiou, Athanasios C. Megaritis, Selma Özçağ (2018)

Commentationes Mathematicae Universitatis Carolinae

We study several kinds of statistical convergence of sequences of functions with values in semi-uniform spaces. Particularly, we generalize to statistical convergence the classical results of C. Arzelà, Dini and P.S. Alexandroff, as well as their statistical versions studied in [Caserta A., Di Maio G., Kočinac L.D.R., {Statistical convergence in function spaces},. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.] and [Caserta A., Kočinac L.D.R., {On statistical exhaustiveness}, Appl. Math. Lett....

Tauberian theorems for statistically (C,1,1) summable double sequences of fuzzy numbers

Zerrin Önder, İbrahim Çanak, Ümit Totur (2017)

Open Mathematics

In this paper, we prove that a bounded double sequence of fuzzy numbers which is statistically convergent is also statistically (C, 1, 1) summable to the same number. We construct an example that the converse of this statement is not true in general. We obtain that the statistically (C, 1, 1) summable double sequence of fuzzy numbers is convergent and statistically convergent to the same number under the slowly oscillating and statistically slowly oscillating conditions in certain senses, respectively....

The reaping and splitting numbers of nice ideals

Rafał Filipów (2014)

Colloquium Mathematicae

We examine the splitting number (B) and the reaping number (B) of quotient Boolean algebras B = (ω)/ℐ where ℐ is an F σ ideal or an analytic P-ideal. For instance we prove that under Martin’s Axiom ((ω)/ℐ) = for all F σ ideals ℐ and for all analytic P-ideals ℐ with the BW property (and one cannot drop the BW assumption). On the other hand under Martin’s Axiom ((ω)/ℐ) = for all F σ ideals and all analytic P-ideals ℐ (in this case we do not need the BW property). We also provide applications of these characteristics...

Currently displaying 1 – 20 of 22

Page 1 Next