On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms
Nguyen Thanh Hong; Trinh Tuan; Nguyen Xuan Thao
Applications of Mathematics (2013)
- Volume: 58, Issue: 4, page 473-486
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHong, Nguyen Thanh, Tuan, Trinh, and Thao, Nguyen Xuan. "On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms." Applications of Mathematics 58.4 (2013): 473-486. <http://eudml.org/doc/260609>.
@article{Hong2013,
abstract = {We deal with several classes of integral transformations of the form \[ f(x)\rightarrow D\int \_\{\mathbb \{R\}\_+^2\} \frac\{1\}\{u\} (\{\rm e\}^\{-u\cosh (x+v)\}+\{\rm e\}^\{-u\cosh (x-v)\}) h(u)f(v) \{\rm d\}u \{\rm d\} v, \]
where $D$ is an operator. In case $D$ is the identity operator, we obtain several operator properties on $L_p(\mathbb \{R\}_+)$ with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on $L_2(\mathbb \{R\}_+)$ and define the inversion formula. Further, for an other class of differential operators of finite order, we apply these transformations to solve a class of integro-differential problems of generalized convolution type.},
author = {Hong, Nguyen Thanh, Tuan, Trinh, Thao, Nguyen Xuan},
journal = {Applications of Mathematics},
keywords = {convolution; Hölder inequality; Young's theorem; Watson's theorem; unitary; Fourier cosine; Kontorovich-Lebedev; transform; integro-differential equation; convolution; Hölder inequality; Young's theorem; Watson's theorem; Fourier cosine; Kontorovich-Lebedev transform; integro-differential equation},
language = {eng},
number = {4},
pages = {473-486},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms},
url = {http://eudml.org/doc/260609},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Hong, Nguyen Thanh
AU - Tuan, Trinh
AU - Thao, Nguyen Xuan
TI - On the Fourier cosine—Kontorovich-Lebedev generalized convolution transforms
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 473
EP - 486
AB - We deal with several classes of integral transformations of the form \[ f(x)\rightarrow D\int _{\mathbb {R}_+^2} \frac{1}{u} ({\rm e}^{-u\cosh (x+v)}+{\rm e}^{-u\cosh (x-v)}) h(u)f(v) {\rm d}u {\rm d} v, \]
where $D$ is an operator. In case $D$ is the identity operator, we obtain several operator properties on $L_p(\mathbb {R}_+)$ with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on $L_2(\mathbb {R}_+)$ and define the inversion formula. Further, for an other class of differential operators of finite order, we apply these transformations to solve a class of integro-differential problems of generalized convolution type.
LA - eng
KW - convolution; Hölder inequality; Young's theorem; Watson's theorem; unitary; Fourier cosine; Kontorovich-Lebedev; transform; integro-differential equation; convolution; Hölder inequality; Young's theorem; Watson's theorem; Fourier cosine; Kontorovich-Lebedev transform; integro-differential equation
UR - http://eudml.org/doc/260609
ER -
References
top- Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, U.S. Department of Commerce Washington (1964). (1964) Zbl0171.38503
- Adams, R. A., Fournier, J. J. F., Sobolev Spaces, 2nd ed. Pure and Applied Mathematics 140, Academic Press New York (2003). (2003) MR2424078
- Al-Musallam, F., Tuan, V. K., 10.1007/BF03322007, Result. Math. 38 (2000), 197-208. (2000) Zbl0970.44004MR1797712DOI10.1007/BF03322007
- Britvina, L. E., 10.1080/10652460412331320395, Integral Transforms Spec. Funct. 16 (2005), 379-389. (2005) Zbl1085.42003MR2138055DOI10.1080/10652460412331320395
- Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Tables of Integral Transforms, Vol. I. Bateman Manuscript Project. California Institute of Technology, McGraw-Hill Book Co. New York (1954). (1954) MR0061695
- Glaeske, H.-J., Prudnikov, A. P., Skórnik, K. A., Operational Calculus and Related Topics. Analytical Methods and Special Functions 10, Chapman & Hall/CRC Boca Raton (2006). (2006) MR2254107
- Grigoriev, Y. N., Ibragimov, N. H., Kovalev, V. F., Meleshko, S. V., Symmetries of Integro-Differential Equations. With Applications in Mechanics and Plasma Physics. Lecture Notes in Physics 806, Springer Dordrecht (2010). (2010) MR2662653
- Najmark, M. A., Normed Algebras. Translated from the Second Russian Edition by Leo F. Boron. 3rd Completely Revised American Ed. Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff Publishing Groningen (1972). (1972) MR0438123
- Prudnikov, A. P., Brychkov, Y. A., Marichev, O. I., Integrals and Series Vol. 2: Special Functions. Transl. from the Russian by N. M. Queen, Gordon & Breach Science Publishers New York (1986). (1986) MR0874987
- Sneddon, I. N., Fourier Transforms, McGray-Hill Book Company New York (1950). (1950) Zbl0038.26801MR0041963
- Titchmarsh, E. C., Introduction to the Theory of Fourier Integrals. Third edition, Chelsea Publishing Co. New York (1986). (1986) MR0942661
- Tuan, T., On the generalized convolution with a weight function for the Fourier cosine and the inverse Kontorovich-Lebedev integral transformations, Nonlinear Funct. Anal. Appl. 12 (2007), 325-341. (2007) Zbl1142.44007MR2391937
- Tuan, V. K., 10.1006/jmaa.1998.6177, J. Math. Anal. Appl. 229 (1999), 519-529. (1999) Zbl0920.46035MR1666432DOI10.1006/jmaa.1998.6177
- Wimp, J., 10.1017/S0013091500011202, Proc. Edinb. Math. Soc., II. Ser. 14 (1964), 33-40. (1964) Zbl0127.05701MR0164204DOI10.1017/S0013091500011202
- Yakubovich, S. B., Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math. 54 (2003), 99-110. (2003) Zbl1067.44004MR1995135
- Yakubovich, S. B., Britvina, L. E., 10.1080/10652460903101919, Integral Transforms Spec. Funct. 21 (2010), 259-276. (2010) Zbl1191.44002MR2604157DOI10.1080/10652460903101919
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.