Cohomology of Hom-Lie superalgebras and -deformed Witt superalgebra
Faouzi Ammar; Abdenacer Makhlouf; Nejib Saadaoui
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 3, page 721-761
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAmmar, Faouzi, Makhlouf, Abdenacer, and Saadaoui, Nejib. "Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra." Czechoslovak Mathematical Journal 63.3 (2013): 721-761. <http://eudml.org/doc/260611>.
@article{Ammar2013,
abstract = {Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted $\{\rm osp\}(1,2)$ superalgebra and $q$-deformed Witt superalgebra.},
author = {Ammar, Faouzi, Makhlouf, Abdenacer, Saadaoui, Nejib},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hom-Lie superalgebra; derivation; cohomology; $q$-deformed superalgebra; Hom-Lie superalgebra; cohomology; -deformed superalgebra},
language = {eng},
number = {3},
pages = {721-761},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra},
url = {http://eudml.org/doc/260611},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Ammar, Faouzi
AU - Makhlouf, Abdenacer
AU - Saadaoui, Nejib
TI - Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 721
EP - 761
AB - Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted ${\rm osp}(1,2)$ superalgebra and $q$-deformed Witt superalgebra.
LA - eng
KW - Hom-Lie superalgebra; derivation; cohomology; $q$-deformed superalgebra; Hom-Lie superalgebra; cohomology; -deformed superalgebra
UR - http://eudml.org/doc/260611
ER -
References
top- Aizawa, N., Sato, H., 10.1016/0370-2693(91)90671-C, Phys. Lett. B 256 (1991), 185-190. (1991) MR1099971DOI10.1016/0370-2693(91)90671-C
- Ammar, F., Ejbehi, Z., Makhlouf, A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836. (2011) Zbl1237.17003MR2917693
- Ammar, F., Makhlouf, A., 10.1016/j.jalgebra.2010.06.014, J. Algebra 324 (2010), 1513-1528. (2010) Zbl1258.17008MR2673748DOI10.1016/j.jalgebra.2010.06.014
- Benayadi, S., Makhlouf, A., Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys, .
- Hartwig, J. T., Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.07.036, J. Algebra 295 (2006), 314-361. (2006) Zbl1138.17012MR2194957DOI10.1016/j.jalgebra.2005.07.036
- Hu, N., -Witt algebras, -Lie algebras, -holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70. (1999) Zbl0943.17007MR1680657
- Larsson, D., Silvestrov, S. D., 10.1016/j.jalgebra.2005.02.032, J. Algebra 288 (2005), 321-344. (2005) MR2146132DOI10.1016/j.jalgebra.2005.02.032
- Larsson, D., Silvestrov, S. D., Quasi-Lie algebras, Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248. (2005) Zbl1105.17005MR2184027
- Larsson, D., Silvestrov, S. D., 10.1080/00927870701545127, Commun. Algebra 35 (2007), 4303-4318. (2007) MR2372334DOI10.1080/00927870701545127
- Larsson, D., Silvestrov, S. D., 10.1007/s10582-006-0028-3, Czechoslovak J. Phys. 55 (2005), 1473-1478. (2005) MR2223838DOI10.1007/s10582-006-0028-3
- Liu, K., 10.1007/BF00420485, Lett. Math. Phys. 24 (1992), 257-265. (1992) MR1172453DOI10.1007/BF00420485
- Makhlouf, A., Paradigm of nonassociative Hom-algebras and Hom-superalgebras, Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177. (2010) Zbl1252.17001MR2648355
- Makhlouf, A., Silvestrov, S. D., 10.4303/jglta/S070206, J. Gen. Lie Theory Appl. 2 (2008), 51-64. (2008) Zbl1184.17002MR2399415DOI10.4303/jglta/S070206
- Makhlouf, A., Silvestrov, S., Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206. (2009) Zbl1173.16019MR2509148
- Makhlouf, A., Silvestrov, S. D., 10.1515/forum.2010.040, Forum Math. 22 (2010), 715-759. (2010) Zbl1201.17012MR2661446DOI10.1515/forum.2010.040
- Scheunert, M., 10.1063/1.524113, J. Math. Phys. 20 (1979), 712-720. (1979) Zbl0423.17003MR0529734DOI10.1063/1.524113
- Scheunert, M., 10.1007/BFb0070929, Springer Berlin (1979). (1979) MR0537441DOI10.1007/BFb0070929
- Scheunert, M., Zhang, R. B., 10.1063/1.532508, J. Math. Phys. 39 (1998), 5024-5061. (1998) Zbl0928.17023MR1643330DOI10.1063/1.532508
- Sheng, Y., 10.1007/s10468-011-9280-8, Algebr. Represent. Theory 15 (2012), 1081-1098. (2012) MR2994017DOI10.1007/s10468-011-9280-8
- Yau, D., 10.4303/jglta/S070209, J. Gen. Lie Theory Appl. 2 (2008), 95-108. (2008) Zbl1214.17001MR2399418DOI10.4303/jglta/S070209
- Yau, D., Hom-algebras and homology, J. Lie Theory 19 (2009), 409-421. (2009) Zbl1252.17002MR2572137
- Yau, D., Hom-bialgebras and comodule Hom-algebras, Int. Electron. J. Algebra 8 (2010), 45-64. (2010) Zbl1253.16032MR2660540
- Yau, D., The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. (2009) Zbl1179.17001MR2539278
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.