Uppers to zero in and almost principal ideals
Keivan Borna; Abolfazl Mohajer-Naser
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 565-572
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBorna, Keivan, and Mohajer-Naser, Abolfazl. "Uppers to zero in $R[x]$ and almost principal ideals." Czechoslovak Mathematical Journal 63.2 (2013): 565-572. <http://eudml.org/doc/260617>.
@article{Borna2013,
abstract = {Let $R$ be an integral domain with quotient field $K$ and $f(x)$ a polynomial of positive degree in $K[x]$. In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form $I = f(x)K[x] \cap R[x]$ are almost principal in the following two cases: – $J$, the ideal generated by the leading coefficients of $I$, satisfies $J^\{-1\} = R$. – $I^\{-1\}$ as the $R[x]$-submodule of $K(x)$ is of finite type. Furthermore we prove that for $I = f(x)K[x] \cap R[x]$ we have: – $I^\{-1\}\cap K[x]=(I:_\{K(x)\}I)$. – If there exists $p/q \in I^\{-1\}-K[x]$, then $(q,f)\ne 1$ in $K[x]$. If in addition $q$ is irreducible and $I$ is almost principal, then $I^\{\prime \} = q(x)K[x] \cap R[x]$ is an almost principal upper to zero. Finally we show that a Schreier domain $R$ is a greatest common divisor domain if and only if every upper to zero in $R[x]$ contains a primitive polynomial.},
author = {Borna, Keivan, Mohajer-Naser, Abolfazl},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost principal ideal; divisorial ideal; greatest common divisor domain; Schreier domain; uppers to zero; greatest common divisor domain; uppers to zero},
language = {eng},
number = {2},
pages = {565-572},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uppers to zero in $R[x]$ and almost principal ideals},
url = {http://eudml.org/doc/260617},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Borna, Keivan
AU - Mohajer-Naser, Abolfazl
TI - Uppers to zero in $R[x]$ and almost principal ideals
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 565
EP - 572
AB - Let $R$ be an integral domain with quotient field $K$ and $f(x)$ a polynomial of positive degree in $K[x]$. In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form $I = f(x)K[x] \cap R[x]$ are almost principal in the following two cases: – $J$, the ideal generated by the leading coefficients of $I$, satisfies $J^{-1} = R$. – $I^{-1}$ as the $R[x]$-submodule of $K(x)$ is of finite type. Furthermore we prove that for $I = f(x)K[x] \cap R[x]$ we have: – $I^{-1}\cap K[x]=(I:_{K(x)}I)$. – If there exists $p/q \in I^{-1}-K[x]$, then $(q,f)\ne 1$ in $K[x]$. If in addition $q$ is irreducible and $I$ is almost principal, then $I^{\prime } = q(x)K[x] \cap R[x]$ is an almost principal upper to zero. Finally we show that a Schreier domain $R$ is a greatest common divisor domain if and only if every upper to zero in $R[x]$ contains a primitive polynomial.
LA - eng
KW - almost principal ideal; divisorial ideal; greatest common divisor domain; Schreier domain; uppers to zero; greatest common divisor domain; uppers to zero
UR - http://eudml.org/doc/260617
ER -
References
top- Anderson, D. D., Anderson, D. F., Generalized GCD domains, Comment. Math. Univ. St. Pauli 28 (1980), 215-221. (1980) Zbl0434.13001MR0578675
- Anderson, D. D., Dumitrescu, T., Zafrullah, M., 10.1080/00927870701302107, Commun. Algebra 35 (2007), 2096-2104. (2007) Zbl1119.13001MR2331832DOI10.1080/00927870701302107
- Anderson, D. D., Zafrullah, M., The Schreier property and Gauss' Lemma, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 10 (2007), 43-62. (2007) Zbl1129.13025MR2310957
- Cohn, P. M., 10.1017/S0305004100042791, Proc. Camb. Philos. Soc. 64 (1968), 251-264. (1968) Zbl0157.08401MR0222065DOI10.1017/S0305004100042791
- Gilmer, R., Multiplicative Ideal Theory. Pure and Applied Mathematics. Vol. 12, Marcel Dekker New York (1972). (1972) MR0427289
- Hamann, E., Houston, E., Johnson, J. L., 10.2140/pjm.1988.135.65, Pac. J. Math. 135 (1988), 65-79. (1988) Zbl0627.13007MR0965685DOI10.2140/pjm.1988.135.65
- Houston, E., Uppers to zero in polynomial rings, Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 243-261. (2006) Zbl1116.13014MR2265813
- Houston, E., Zafrullah, M., UMV-domains, Arithmetical Properties of Commutative Rings and Monoids. Lecture Notes in Pure and Applied Mathematics 241 S. T. Chapman Chapman & Hall/CRC Boca Raton (2005), 304-315. (2005) Zbl1079.13015MR2140703
- Kaplansky, I., Commutative Rings, Allyn and Bacon Boston (1970). (1970) Zbl0203.34601MR0254021
- Tang, H. T., Gauss' lemma, Proc. Am. Math. Soc. 35 (1972), 372-376. (1972) Zbl0266.13007MR0302638
- Zafrullah, M., 10.1016/0022-4049(88)90006-0, J. Pure Appl. Algebra 50 (1988), 93-107. (1988) MR0931909DOI10.1016/0022-4049(88)90006-0
- Zafrullah, M., What -coprimality can do for you, Multiplicative Ideal Theory in Commutative Algebra. A Tribute to the Work of Robert Gilmer J. W. Brewer et al. Springer New York (2006), 387-404. (2006) Zbl1138.13001MR2265821
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.