# The Schreier Property and Gauss' Lemma

Daniel D. Anderson; Muhammad Zafrullah

Bollettino dell'Unione Matematica Italiana (2007)

- Volume: 10-B, Issue: 1, page 43-62
- ISSN: 0392-4041

## Access Full Article

top## Abstract

top## How to cite

topAnderson, Daniel D., and Zafrullah, Muhammad. "The Schreier Property and Gauss' Lemma." Bollettino dell'Unione Matematica Italiana 10-B.1 (2007): 43-62. <http://eudml.org/doc/290437>.

@article{Anderson2007,

abstract = {Let $D$ be an integral domain with quotient field $D$. Recall that $D$ is Schreier if $D$ is integrally closed and for all $x, y, z \in D \setminus \\{0\\}$, $x|yz$ implies that $x = r \cdot s$ where $r|y$ e $s|z$. A GCD domain is Schreier. We show that an integral domain $D$ is a GCD domain if and only if (i) for each pair $a, b \in D \setminus \\{0\\}$, there is a finitely generated ideal $B$ such that $aD \bigcap bD = B_v$ and (ii) every quadratic in $D[X]$ that is a product of two linear polynomials in $K[X]$ is a product of two linear polynomials in $D[X]$. We also show that $D$ is Schreier if and only if every polynomial in $D[X]$ with a linear factor in $K[X]$ has a linear factor in $D[X]$ and show that $D$ is a Schreier domain with algebraically closed quotient field if and only if every nonconstant polynomial over $D$ is expressible as a product of linear polynomials. We also compare the two most common modes of generalizing GCD domains. One is via properties that imply Gauss' Lemma and the other is via the Schreier property. The Schreier property is not implied by any of the specializations of Gauss' Lemma while all but one of the specializations of Gauss Lemma are implied by the Schreier property.},

author = {Anderson, Daniel D., Zafrullah, Muhammad},

journal = {Bollettino dell'Unione Matematica Italiana},

language = {eng},

month = {2},

number = {1},

pages = {43-62},

publisher = {Unione Matematica Italiana},

title = {The Schreier Property and Gauss' Lemma},

url = {http://eudml.org/doc/290437},

volume = {10-B},

year = {2007},

}

TY - JOUR

AU - Anderson, Daniel D.

AU - Zafrullah, Muhammad

TI - The Schreier Property and Gauss' Lemma

JO - Bollettino dell'Unione Matematica Italiana

DA - 2007/2//

PB - Unione Matematica Italiana

VL - 10-B

IS - 1

SP - 43

EP - 62

AB - Let $D$ be an integral domain with quotient field $D$. Recall that $D$ is Schreier if $D$ is integrally closed and for all $x, y, z \in D \setminus \{0\}$, $x|yz$ implies that $x = r \cdot s$ where $r|y$ e $s|z$. A GCD domain is Schreier. We show that an integral domain $D$ is a GCD domain if and only if (i) for each pair $a, b \in D \setminus \{0\}$, there is a finitely generated ideal $B$ such that $aD \bigcap bD = B_v$ and (ii) every quadratic in $D[X]$ that is a product of two linear polynomials in $K[X]$ is a product of two linear polynomials in $D[X]$. We also show that $D$ is Schreier if and only if every polynomial in $D[X]$ with a linear factor in $K[X]$ has a linear factor in $D[X]$ and show that $D$ is a Schreier domain with algebraically closed quotient field if and only if every nonconstant polynomial over $D$ is expressible as a product of linear polynomials. We also compare the two most common modes of generalizing GCD domains. One is via properties that imply Gauss' Lemma and the other is via the Schreier property. The Schreier property is not implied by any of the specializations of Gauss' Lemma while all but one of the specializations of Gauss Lemma are implied by the Schreier property.

LA - eng

UR - http://eudml.org/doc/290437

ER -

## References

top- ANDERSON, D.D. - ANDERSON, D.F. - ZAFRULLAH, M., Splitting the t-class group, J. Pure Appl. Algebra, 74 (1991), 17-37. Zbl0760.13006MR1129127DOI10.1016/0022-4049(91)90046-5
- ANDERSON, D.D. - QUINTERO, R., Some generalizations of GCD-domains, Factorization in Integral Domains, 439-480, Lecture Notes in Pure and Appl. Math., 189, Dekker, New York, 1997. MR1460772
- ANDERSON, D.D. - ZAFRULLAH, M., M, P.. Cohn's completely primal elements, Zero-dimensional Commutative Rings, 115-123, Lecture Notes in Pure and Appl. Math., 171, Dekker, New York, 1995. Zbl0887.13012MR1335708
- ANDERSON, D.D. - ZAFRULLAH, M., Splitting sets in integral domains, Proc. Amer. Math. Soc., 129 (2001), 2209-2217. Zbl0962.13001MR1823902DOI10.1090/S0002-9939-00-05863-9
- ANDERSON, D.F., Integral v-ideals, Glasgow Math. J., 22 (1981), 167-172. Zbl0467.13012MR623001DOI10.1017/S0017089500004638
- ARNOLD, J. - SHELDON, P., Integral domains that satisfy Gauss's lemma, Michigan Math. J., 22 (1975), 39-51. Zbl0314.13008MR371887
- BASTIDA, E. - GILMER, R., Overrings and divisorial ideals of rings of the form D+M, Michigan Math. J., 20 (1973), 79-95. Zbl0239.13001MR323782
- BROOKFIELD, G. - RUSH, D., An antimatter domain that is not pre-Schreier, preprint.
- COHN, P.M., Bezout rings and their subrings, Proc. Cambridge Phil. Soc., 64 (1968), 251-264. Zbl0157.08401MR222065
- COYKENDALL, J. - DOBBS, D. - MULLINS, B., On integral domains with no atoms, Comm. Algebra, 27 (1999), 5813-5831. Zbl0990.13015MR1726278DOI10.1080/00927879908826792
- DOBBS, D., Coherence, ascent of going-down, and pseudo-valuation domains, Houston J. Math., 4 (1978), 551-567. Zbl0388.13002MR523613
- GILMER, R., Multiplicative Ideal Theory, Dekker, New York, 1972. Zbl0248.13001MR427289
- GILMER, R. - PARKER, T., Divisibility properties in semigroup rings, Michigan Math. J., 21 (1974), 65-86. Zbl0285.13007MR342635
- HEDSTROM, J. - HOUSTON, E., Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147. Zbl0368.13002MR485811
- KAPLANSKY, I., Commutative Rings, Allyn and Bacon, Boston, 1970. MR254021
- MALIK, S. - MOTT, J. - ZAFRULLAH, M., The GCD property and irreducible quadratic polynomials, Internat. J. Math. Sci., 9 (1986), 749-752. Zbl0646.13009MR870530DOI10.1155/S0161171286000893
- MOTT, J. - NASHIER, B. - ZAFRULLAH, M., Contents of polynomials and invertibility, Comm. Algebra, 18 (1990), 1569-1583. Zbl0705.13005MR1059749DOI10.1080/00927879008823984
- MCADAM, S. - RUSH, D., Schreier rings, Bull. London Math. Soc., 10 (1978), 77-80. MR476723DOI10.1112/blms/10.1.77
- MOTT, J. - SCHEXNAYDER, M., Exact sequences of semi-value groups, J. Reine Angew Math.283/284 (1976), 388-401. Zbl0347.13001MR404247
- RUSH, D., Quadratic polynomials, factorization in integral domains and Schreier domains in pullbacks, Mathematika, 50 (2003), 103-112. Zbl1076.13002MR2136355DOI10.1112/S0025579300014832
- SCHEXNAYDER, M., Groups of Divisibility, Dissertation, Florida State University, 1973.
- WATERHOUSE, W., Quadratic polynomials and unique factorization, Amer. Math. Monthly, 109 (2002), 70-72. Zbl1036.13004MR1903514DOI10.2307/2695769
- ZAFRULLAH, M., On a property of pre-Schreier domains, Comm. Algebra, 15 (1987), 1895-1920. Zbl0634.13004MR898300DOI10.1080/00927878708823512
- ZAFRULLAH, M., Well-behaved prime t-ideals, J. Pure Appl. Algebra, 65 (1990), 199-207. Zbl0705.13001MR1068255DOI10.1016/0022-4049(90)90119-3
- ZAFRULLAH, M., Putting t-invertibility to use, Non-Noetherian Commutative Ring Theory, 429-457, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0988.13003MR1858174

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.