Varieties of Distributive Rotational Lattices

Gábor Czédli; Ildikó V. Nagy

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 1, page 71-78
  • ISSN: 0231-9721

Abstract

top
A rotational lattice is a structure L ; , , g where L = L ; , is a lattice and g is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.

How to cite

top

Czédli, Gábor, and Nagy, Ildikó V.. "Varieties of Distributive Rotational Lattices." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 71-78. <http://eudml.org/doc/260631>.

@article{Czédli2013,
abstract = {A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.},
author = {Czédli, Gábor, Nagy, Ildikó V.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety; rotational lattices; lattices with automorphisms; lattices with involution; distributivity; lattice varieties; subdirectly irreducible distributive lattices},
language = {eng},
number = {1},
pages = {71-78},
publisher = {Palacký University Olomouc},
title = {Varieties of Distributive Rotational Lattices},
url = {http://eudml.org/doc/260631},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Czédli, Gábor
AU - Nagy, Ildikó V.
TI - Varieties of Distributive Rotational Lattices
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 71
EP - 78
AB - A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices.
LA - eng
KW - rotational lattice; lattice with automorphism; lattice with involution; distributivity; lattice variety; rotational lattices; lattices with automorphisms; lattices with involution; distributivity; lattice varieties; subdirectly irreducible distributive lattices
UR - http://eudml.org/doc/260631
ER -

References

top
  1. Burris, S., Sankappanavar, H. P., A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York–Berlin, 1981. The Millennium Edition: http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html. (1981) Zbl0478.08001MR0648287
  2. Chajda, I., Czédli, G, How to generate the involution lattice of quasiorders?, Studia Sci. Math. Hungar. 32 (1996), 415–427. (1996) Zbl0864.06003MR1432183
  3. Chajda, I., Czédli, G., Halaš, R., 10.1007/s00012-012-0213-0, Algebra Universalis 69 (2013), 83–92. (2013) MR3029971DOI10.1007/s00012-012-0213-0
  4. Czédli, G., Szabó, L., Quasiorders of lattices versus pairs of congruences, Acta Sci. Math. (Szeged) 60 (1995), 207–211. (1995) Zbl0829.06008MR1348689
  5. Dziobiak, W., Ježek, J., Maróti, M., 10.1007/s00233-008-9087-z, Semigroup Forum 78 (2009), 253–261. (2009) Zbl1171.08002MR2486638DOI10.1007/s00233-008-9087-z
  6. Grätzer, G.:, Lattice Theory: Foundation, Birkhäuser Verlag, Basel, 2011. (2011) Zbl1233.06001MR2768581
  7. Ježek, J., 10.1007/BF02574263, Semigroup Forum 43 (1991), 178–186. (1991) Zbl0770.08004MR1114689DOI10.1007/BF02574263
  8. Jónsson, B., Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121. (1967) MR0237402
  9. Maróti, M., 10.1007/s000120050054, Algebra Universalis 38 (1997), 238–265. (1997) MR1619766DOI10.1007/s000120050054
  10. Nagy, I. V., Minimal quasivarieties of semilattices over commutative groups, Algebra Universalis (to appear). 
  11. Vetterlein, T., Boolean algebras with an automorphism group: a framework for Łukasiewicz logic, J. Mult.-Val. Log. Soft Comput. 14 (2008), 51–67. (2008) Zbl1236.03018MR2456707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.