Page 1 Next

Displaying 1 – 20 of 97

Showing per page

2-normalization of lattices

Ivan Chajda, W. Cheng, S. L. Wismath (2008)

Czechoslovak Mathematical Journal

Let τ be a type of algebras. A valuation of terms of type τ is a function v assigning to each term t of type τ a value v ( t ) 0 . For k 1 , an identity s t of type τ is said to be k -normal (with respect to valuation v ) if either s = t or both s and t have value k . Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called k -normal (with respect to the valuation v ) if all its identities are k -normal. For any variety V , there is a least...

A characterization of uninorms on bounded lattices via closure and interior operators

Gül Deniz Çayli (2023)

Kybernetika

Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.

A note on convex sublattices of lattices

Václav Slavík (1995)

Commentationes Mathematicae Universitatis Carolinae

Let C S u b ( K ) denote the variety of lattices generated by convex sublattices of lattices in K . For any proper variety V , the variety C S u b ( V ) is proper. There are uncountably many varieties V with C S u b ( V ) = V .

A note on Sugihara algebras.

Josep M. Font, Gonzalo Rodríguez Pérez (1992)

Publicacions Matemàtiques

In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same...

Almost ff-universal and q-universal varieties of modular 0-lattices

V. Koubek, J. Sichler (2004)

Colloquium Mathematicae

A variety 𝕍 of algebras of a finite type is almost ff-universal if there is a finiteness-preserving faithful functor F: 𝔾 → 𝕍 from the category 𝔾 of all graphs and their compatible maps such that Fγ is nonconstant for every γ and every nonconstant homomorphism h: FG → FG' has the form h = Fγ for some γ: G → G'. A variety 𝕍 is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice....

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Currently displaying 1 – 20 of 97

Page 1 Next