On the Diophantine equation
Refik Keskin; Zafer Şiar; Olcay Karaatlı
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 3, page 783-797
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKeskin, Refik, Şiar, Zafer, and Karaatlı, Olcay. "On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$." Czechoslovak Mathematical Journal 63.3 (2013): 783-797. <http://eudml.org/doc/260652>.
@article{Keskin2013,
abstract = {In this study, we determine when the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\le n\le 10.$ Moreover, we give all positive integer solutions of the same equation for $0\le n\le 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$.},
author = {Keskin, Refik, Şiar, Zafer, Karaatlı, Olcay},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; quadratic Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number},
language = {eng},
number = {3},
pages = {783-797},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$},
url = {http://eudml.org/doc/260652},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Keskin, Refik
AU - Şiar, Zafer
AU - Karaatlı, Olcay
TI - On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 783
EP - 797
AB - In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\le n\le 10.$ Moreover, we give all positive integer solutions of the same equation for $0\le n\le 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
LA - eng
KW - Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; quadratic Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number
UR - http://eudml.org/doc/260652
ER -
References
top- Leon, M. J. De, Pell's equations and Pell number triples, Fibonacci Q. 14 (1976), 456-460. (1976) MR0419344
- Jacobson, M. J., Williams, H. C., Solving the Pell Equation, CMS Books in Mathematics. Springer, New York (2009). (2009) Zbl1177.11027MR2466979
- Jones, J. P., Representation of solutions of Pell equations using Lucas sequences, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. (2003) Zbl1047.11017MR2054717
- Kalman, D., Mena, R., 10.2307/3219318, Math. Mag. 76 (2003), 167-181. (2003) Zbl1048.11014MR2083847DOI10.2307/3219318
- Keskin, R., 10.1016/j.camwa.2010.08.012, Comput. Math. Appl. 60 (2010), 2225-2230. (2010) Zbl1205.11035MR2725312DOI10.1016/j.camwa.2010.08.012
- Keskin, R., Karaatli, O., Şiar, Z., On the Diophantine equation , Miskolc Math. Notes 13 (2012), 375-388. (2012) MR3002637
- Keskin, R., Demirtürk, B., Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences, Ars Comb. 111 (2013), 161-179. (2013) MR3055272
- Marlewski, A., Zarzycki, P., 10.1016/S0898-1221(04)90010-7, Comput. Math. Appl. 47 (2004), 115-121. (2004) MR2062730DOI10.1016/S0898-1221(04)90010-7
- McDaniel, W. L., Diophantine representation of Lucas sequences, Fibonacci Q. 33 (1995), 59-63. (1995) Zbl0830.11006MR1316283
- Melham, R., Conics which characterize certain Lucas sequences, Fibonacci Q. 35 (1997), 248-251. (1997) Zbl0968.11501MR1465839
- Nagell, T., Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). (1951) Zbl0042.26702MR0043111
- Ribenboim, P., My Numbers, My Friends. Popular Lectures on Number Theory, Springer, New York (2000). (2000) Zbl0947.11001MR1761897
- Robertson, J. P., Solving the generalized Pell equation , http://hometown.aol.com/jpr2718/pell.pdf (2003). (2003)
- Robinowitz, S., 10.1007/978-94-009-0223-7_33, Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. (1996) MR1393473DOI10.1007/978-94-009-0223-7_33
- Yuan, P., Hu, Y., On the Diophantine equation , , Comput. Math. Appl. 61 (2011), 573-577. (2011) Zbl1217.11031MR2764051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.