On the Diophantine equation x 2 - k x y + y 2 - 2 n = 0

Refik Keskin; Zafer Şiar; Olcay Karaatlı

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 3, page 783-797
  • ISSN: 0011-4642

Abstract

top
In this study, we determine when the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 has an infinite number of positive integer solutions x and y for 0 n 10 . Moreover, we give all positive integer solutions of the same equation for 0 n 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 .

How to cite

top

Keskin, Refik, Şiar, Zafer, and Karaatlı, Olcay. "On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$." Czechoslovak Mathematical Journal 63.3 (2013): 783-797. <http://eudml.org/doc/260652>.

@article{Keskin2013,
abstract = {In this study, we determine when the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\le n\le 10.$ Moreover, we give all positive integer solutions of the same equation for $0\le n\le 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$.},
author = {Keskin, Refik, Şiar, Zafer, Karaatlı, Olcay},
journal = {Czechoslovak Mathematical Journal},
keywords = {Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; quadratic Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number},
language = {eng},
number = {3},
pages = {783-797},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Diophantine equation $x^\{2\}-kxy+y^\{2\}-2^\{n\}=0$},
url = {http://eudml.org/doc/260652},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Keskin, Refik
AU - Şiar, Zafer
AU - Karaatlı, Olcay
TI - On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 783
EP - 797
AB - In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\le n\le 10.$ Moreover, we give all positive integer solutions of the same equation for $0\le n\le 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
LA - eng
KW - Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number; quadratic Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number
UR - http://eudml.org/doc/260652
ER -

References

top
  1. Leon, M. J. De, Pell's equations and Pell number triples, Fibonacci Q. 14 (1976), 456-460. (1976) MR0419344
  2. Jacobson, M. J., Williams, H. C., Solving the Pell Equation, CMS Books in Mathematics. Springer, New York (2009). (2009) Zbl1177.11027MR2466979
  3. Jones, J. P., Representation of solutions of Pell equations using Lucas sequences, Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. (2003) Zbl1047.11017MR2054717
  4. Kalman, D., Mena, R., 10.2307/3219318, Math. Mag. 76 (2003), 167-181. (2003) Zbl1048.11014MR2083847DOI10.2307/3219318
  5. Keskin, R., 10.1016/j.camwa.2010.08.012, Comput. Math. Appl. 60 (2010), 2225-2230. (2010) Zbl1205.11035MR2725312DOI10.1016/j.camwa.2010.08.012
  6. Keskin, R., Karaatli, O., Şiar, Z., On the Diophantine equation x 2 - k x y + y 2 + 2 n = 0 , Miskolc Math. Notes 13 (2012), 375-388. (2012) MR3002637
  7. Keskin, R., Demirtürk, B., Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences, Ars Comb. 111 (2013), 161-179. (2013) MR3055272
  8. Marlewski, A., Zarzycki, P., 10.1016/S0898-1221(04)90010-7, Comput. Math. Appl. 47 (2004), 115-121. (2004) MR2062730DOI10.1016/S0898-1221(04)90010-7
  9. McDaniel, W. L., Diophantine representation of Lucas sequences, Fibonacci Q. 33 (1995), 59-63. (1995) Zbl0830.11006MR1316283
  10. Melham, R., Conics which characterize certain Lucas sequences, Fibonacci Q. 35 (1997), 248-251. (1997) Zbl0968.11501MR1465839
  11. Nagell, T., Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). (1951) Zbl0042.26702MR0043111
  12. Ribenboim, P., My Numbers, My Friends. Popular Lectures on Number Theory, Springer, New York (2000). (2000) Zbl0947.11001MR1761897
  13. Robertson, J. P., Solving the generalized Pell equation x 2 - D y 2 = N , http://hometown.aol.com/jpr2718/pell.pdf (2003). (2003) 
  14. Robinowitz, S., 10.1007/978-94-009-0223-7_33, Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. (1996) MR1393473DOI10.1007/978-94-009-0223-7_33
  15. Yuan, P., Hu, Y., On the Diophantine equation x 2 - k x y + y 2 + l x = 0 , l { 1 , 2 , 4 } , Comput. Math. Appl. 61 (2011), 573-577. (2011) Zbl1217.11031MR2764051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.