On Semi-Boolean-Like Algebras
Antonio Ledda; Francesco Paoli; Antonino Salibra
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 1, page 101-120
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topLedda, Antonio, Paoli, Francesco, and Salibra, Antonino. "On Semi-Boolean-Like Algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 101-120. <http://eudml.org/doc/260653>.
@article{Ledda2013,
abstract = {In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf \{A\}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf \{A\}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.},
author = {Ledda, Antonio, Paoli, Francesco, Salibra, Antonino},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Boolean-like algebra; central element; noncommutative lattice theory; Boolean-like algebras; semi-Boolean-like algebras; central elements; noncommutative lattice theory; varieties of noncommutative Boolean algebras},
language = {eng},
number = {1},
pages = {101-120},
publisher = {Palacký University Olomouc},
title = {On Semi-Boolean-Like Algebras},
url = {http://eudml.org/doc/260653},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Ledda, Antonio
AU - Paoli, Francesco
AU - Salibra, Antonino
TI - On Semi-Boolean-Like Algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 101
EP - 120
AB - In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf {A}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf {A}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.
LA - eng
KW - Boolean-like algebra; central element; noncommutative lattice theory; Boolean-like algebras; semi-Boolean-like algebras; central elements; noncommutative lattice theory; varieties of noncommutative Boolean algebras
UR - http://eudml.org/doc/260653
ER -
References
top- Bignall, R. J., Leech, J., 10.1007/BF01190707, Algebra Universalis 33 (1995), 387–398. (1995) Zbl0821.06013MR1322781DOI10.1007/BF01190707
- Blok, W. J., Pigozzi, D., 10.1007/BF01188178, Algebra Universalis 31 (1994), 1–35. (1994) Zbl0817.08005MR1250226DOI10.1007/BF01188178
- Burris, S. N., Sankappanavar, H. P., A Course in Universal Algebra, Springer, Berlin, 1981. Zbl0478.08001MR0648287
- Busaniche, M., Cignoli, R., 10.1093/logcom/exn081, Journal of Logic and Computation 20, 4 (2010), 761–793. (2010) Zbl1205.03040MR2670235DOI10.1093/logcom/exn081
- Chajda, I., Halaš, R., Rosenberg, I. G., 10.1007/s000120050001, Algebra Universalis 42 (1999), 239–251. (1999) Zbl0979.08001MR1759484DOI10.1007/s000120050001
- Comer, S., 10.2140/pjm.1971.38.29, Pacific Journal of Mathematics 38 (1971), 29–38. (1971) Zbl0219.08002MR0304277DOI10.2140/pjm.1971.38.29
- Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse on Substructural Logics, Elsevier, Amsterdam, 2007.
- Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998. Zbl1007.03022MR1900263
- Jackson, M., Stokes, T., 10.1142/S0218196709005354, International Journal of Algebra and Computation 19, 7 (2009), 937–961. (2009) Zbl1203.08005MR2589423DOI10.1142/S0218196709005354
- Koppelberg, S., General theory of Boolean algebras, In: Koppelberg, S., Monk, J. D., Bonnet, R. (eds.): Handbook of Boolean Algebras, Vol. 1, North-Holland, Amsterdam, 1989. (1989) MR0991565
- Leech, J., 10.1007/BF01243872, Algebra Universalis 26 (1989), 48–72. (1989) Zbl0669.06006MR0981425DOI10.1007/BF01243872
- Leech, J., 10.1007/BF02574077, Semigroup Forum 52 (1996), 7–24. (1996) Zbl0844.06003MR1363525DOI10.1007/BF02574077
- Manzonetto, G., Salibra, A., From -calculus to universal algebra and back, In: MFCS’08, volume 5162 of LNCS, (2008), 479–490. (2008) Zbl1173.03302MR2539394
- Paoli, F., Ledda, A., Kowalski, T., Spinks, M., Quasi-discriminator varieties, (submitted).
- Salibra, A., Ledda, A., Paoli, F., Kowalski, T., 10.1007/s00012-013-0223-6, Algebra Universalis 69, 2 (2013), 113–138. (2013) Zbl1284.06033MR3037008DOI10.1007/s00012-013-0223-6
- Spinks, M., On the Theory of Pre-BCK Algebras, PhD Thesis, Monash University, 2003. (2003)
- Vaggione, D., 10.1006/jabr.1996.0268, Journal of Algebra 184 (1996), 424–434. (1996) Zbl0868.08003MR1409222DOI10.1006/jabr.1996.0268
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.