On Semi-Boolean-Like Algebras

Antonio Ledda; Francesco Paoli; Antonino Salibra

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 1, page 101-120
  • ISSN: 0231-9721

Abstract

top
In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra 𝐀 with constants 0 , 1 is Boolean-like in case for all a A the congruences θ a , 0 and θ a , 1 are complementary factor congruences of 𝐀 . We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.

How to cite

top

Ledda, Antonio, Paoli, Francesco, and Salibra, Antonino. "On Semi-Boolean-Like Algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 101-120. <http://eudml.org/doc/260653>.

@article{Ledda2013,
abstract = {In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf \{A\}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf \{A\}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.},
author = {Ledda, Antonio, Paoli, Francesco, Salibra, Antonino},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Boolean-like algebra; central element; noncommutative lattice theory; Boolean-like algebras; semi-Boolean-like algebras; central elements; noncommutative lattice theory; varieties of noncommutative Boolean algebras},
language = {eng},
number = {1},
pages = {101-120},
publisher = {Palacký University Olomouc},
title = {On Semi-Boolean-Like Algebras},
url = {http://eudml.org/doc/260653},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Ledda, Antonio
AU - Paoli, Francesco
AU - Salibra, Antonino
TI - On Semi-Boolean-Like Algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 101
EP - 120
AB - In a previous paper, we introduced the notion of Boolean-like algebra as a generalisation of Boolean algebras to an arbitrary similarity type. In a nutshell, a double-pointed algebra $\mathbf {A}$ with constants $0,1$ is Boolean-like in case for all $a\in A$ the congruences $\theta \left( a,0\right) $ and $\theta \left( a,1\right) $ are complementary factor congruences of $\mathbf {A}$. We also introduced the weaker notion of semi-Boolean-like algebra, showing that it retained some of the strong algebraic properties characterising Boolean algebras. In this paper, we continue the investigation of semi-Boolean like algebras. In particular, we show that every idempotent semi-Boolean-like variety is term equivalent to a variety of noncommutative Boolean algebras with additional regular operations.
LA - eng
KW - Boolean-like algebra; central element; noncommutative lattice theory; Boolean-like algebras; semi-Boolean-like algebras; central elements; noncommutative lattice theory; varieties of noncommutative Boolean algebras
UR - http://eudml.org/doc/260653
ER -

References

top
  1. Bignall, R. J., Leech, J., 10.1007/BF01190707, Algebra Universalis 33 (1995), 387–398. (1995) Zbl0821.06013MR1322781DOI10.1007/BF01190707
  2. Blok, W. J., Pigozzi, D., 10.1007/BF01188178, Algebra Universalis 31 (1994), 1–35. (1994) Zbl0817.08005MR1250226DOI10.1007/BF01188178
  3. Burris, S. N., Sankappanavar, H. P., A Course in Universal Algebra, Springer, Berlin, 1981. Zbl0478.08001MR0648287
  4. Busaniche, M., Cignoli, R., 10.1093/logcom/exn081, Journal of Logic and Computation 20, 4 (2010), 761–793. (2010) Zbl1205.03040MR2670235DOI10.1093/logcom/exn081
  5. Chajda, I., Halaš, R., Rosenberg, I. G., 10.1007/s000120050001, Algebra Universalis 42 (1999), 239–251. (1999) Zbl0979.08001MR1759484DOI10.1007/s000120050001
  6. Comer, S., 10.2140/pjm.1971.38.29, Pacific Journal of Mathematics 38 (1971), 29–38. (1971) Zbl0219.08002MR0304277DOI10.2140/pjm.1971.38.29
  7. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse on Substructural Logics, Elsevier, Amsterdam, 2007. 
  8. Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998. Zbl1007.03022MR1900263
  9. Jackson, M., Stokes, T., 10.1142/S0218196709005354, International Journal of Algebra and Computation 19, 7 (2009), 937–961. (2009) Zbl1203.08005MR2589423DOI10.1142/S0218196709005354
  10. Koppelberg, S., General theory of Boolean algebras, In: Koppelberg, S., Monk, J. D., Bonnet, R. (eds.): Handbook of Boolean Algebras, Vol. 1, North-Holland, Amsterdam, 1989. (1989) MR0991565
  11. Leech, J., 10.1007/BF01243872, Algebra Universalis 26 (1989), 48–72. (1989) Zbl0669.06006MR0981425DOI10.1007/BF01243872
  12. Leech, J., 10.1007/BF02574077, Semigroup Forum 52 (1996), 7–24. (1996) Zbl0844.06003MR1363525DOI10.1007/BF02574077
  13. Manzonetto, G., Salibra, A., From λ -calculus to universal algebra and back, In: MFCS’08, volume 5162 of LNCS, (2008), 479–490. (2008) Zbl1173.03302MR2539394
  14. Paoli, F., Ledda, A., Kowalski, T., Spinks, M., Quasi-discriminator varieties, (submitted). 
  15. Salibra, A., Ledda, A., Paoli, F., Kowalski, T., 10.1007/s00012-013-0223-6, Algebra Universalis 69, 2 (2013), 113–138. (2013) Zbl1284.06033MR3037008DOI10.1007/s00012-013-0223-6
  16. Spinks, M., On the Theory of Pre-BCK Algebras, PhD Thesis, Monash University, 2003. (2003) 
  17. Vaggione, D., 10.1006/jabr.1996.0268, Journal of Algebra 184 (1996), 424–434. (1996) Zbl0868.08003MR1409222DOI10.1006/jabr.1996.0268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.