On the subfields of cyclotomic function fields
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 3, page 799-803
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhao, Zhengjun, and Wu, Xia. "On the subfields of cyclotomic function fields." Czechoslovak Mathematical Journal 63.3 (2013): 799-803. <http://eudml.org/doc/260665>.
@article{Zhao2013,
abstract = {Let $K = \mathbb \{F\}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb \{F\}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb \{F\}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb \{F\}_q(T)$, where $P\in \mathbb \{F\}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper.},
author = {Zhao, Zhengjun, Wu, Xia},
journal = {Czechoslovak Mathematical Journal},
keywords = {cyclotomic function fields; $L$-function; class number formula; cyclotomic function fields; -function; class number formula},
language = {eng},
number = {3},
pages = {799-803},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the subfields of cyclotomic function fields},
url = {http://eudml.org/doc/260665},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Zhao, Zhengjun
AU - Wu, Xia
TI - On the subfields of cyclotomic function fields
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 799
EP - 803
AB - Let $K = \mathbb {F}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb {F}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb {F}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb {F}_q(T)$, where $P\in \mathbb {F}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper.
LA - eng
KW - cyclotomic function fields; $L$-function; class number formula; cyclotomic function fields; -function; class number formula
UR - http://eudml.org/doc/260665
ER -
References
top- Bae, S., Lyun, P.-L., 10.4064/aa102-3-4, Acta. Arith. 102 (2002), 251-259. (2002) Zbl0989.11064MR1884718DOI10.4064/aa102-3-4
- Galovich, S., Rosen, M., 10.1016/0022-314X(82)90045-2, J. Number Theory 14 (1982), 156-184. (1982) Zbl0483.12003MR0655724DOI10.1016/0022-314X(82)90045-2
- Guo, L., Linghsuen, S., 10.1090/S0002-9947-99-02325-9, Trans. Am. Math. Soc. 351 (1999), 4445-4467. (1999) MR1608317DOI10.1090/S0002-9947-99-02325-9
- Hayes, D. R., 10.1007/BF01389294, Invent. Math. 65 (1981), 49-69. (1981) MR0636879DOI10.1007/BF01389294
- Rosen, M., Number Theory in Function Fields, Graduate Texts in Mathematics 210. Springer, New York (2002). (2002) Zbl1043.11079MR1876657
- Rosen, M., The Hilbert class field in function fields, Expo. Math. 5 (1987), 365-378. (1987) Zbl0632.12017MR0917350
- Zhao, Z. Z., The Arithmetic Problems of Some Special Algebraic Function Fields, Ph.D. Thesis, NJU (2012), Chinese. (2012)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.