The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the subfields of cyclotomic function fields”

Polynomial Imaginary Decompositions for Finite Separable Extensions

Adam Grygiel (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let K be a field and let L = K[ξ] be a finite field extension of K of degree m > 1. If f ∈ L[Z] is a polynomial, then there exist unique polynomials u , . . . , u m - 1 K [ X , . . . , X m - 1 ] such that f ( j = 0 m - 1 ξ j X j ) = j = 0 m - 1 ξ j u j . A. Nowicki and S. Spodzieja proved that, if K is a field of characteristic zero and f ≠ 0, then u , . . . , u m - 1 have no common divisor in K [ X , . . . , X m - 1 ] of positive degree. We extend this result to the case when L is a separable extension of a field K of arbitrary characteristic. We also show that the same is true for a formal power series in several...

On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari, Abdelmalek Azizi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let K be an imaginary cyclic quartic number field whose 2-class group is of type ( 2 , 2 , 2 ) , i.e., isomorphic to / 2 × / 2 × / 2 . The aim of this paper is to determine the structure of the Iwasawa module of the genus field K ( * ) of K .

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

Similarity:

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.