Statistical convergence of a sequence of random variables and limit theorems
Applications of Mathematics (2013)
- Volume: 58, Issue: 4, page 423-437
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGhosal, Sanjoy. "Statistical convergence of a sequence of random variables and limit theorems." Applications of Mathematics 58.4 (2013): 423-437. <http://eudml.org/doc/260667>.
@article{Ghosal2013,
abstract = {In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order $r$ and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.},
author = {Ghosal, Sanjoy},
journal = {Applications of Mathematics},
keywords = {asymptotic density; random variable; statistical convergence; statistical convergence in probability; statistical convergence in mean of order $r$; statistical convergence in distribution; asymptotic density; random variable; statistical convergence; statistical convergence in mean of order ; statistical convergence in distribution},
language = {eng},
number = {4},
pages = {423-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Statistical convergence of a sequence of random variables and limit theorems},
url = {http://eudml.org/doc/260667},
volume = {58},
year = {2013},
}
TY - JOUR
AU - Ghosal, Sanjoy
TI - Statistical convergence of a sequence of random variables and limit theorems
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 423
EP - 437
AB - In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order $r$ and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.
LA - eng
KW - asymptotic density; random variable; statistical convergence; statistical convergence in probability; statistical convergence in mean of order $r$; statistical convergence in distribution; asymptotic density; random variable; statistical convergence; statistical convergence in mean of order ; statistical convergence in distribution
UR - http://eudml.org/doc/260667
ER -
References
top- Balcerzak, M., Dems, K., Komisarski, A., 10.1016/j.jmaa.2006.05.040, J. Math. Anal. Appl. 328 (2007), 715-729. (2007) Zbl1119.40002MR2285579DOI10.1016/j.jmaa.2006.05.040
- Bunimovich, L. A., Sinai, Ya. G., 10.1007/BF02046760, Commun. Math. Phys. 78 (1981), 479-497. (1981) Zbl0459.60099MR0606459DOI10.1007/BF02046760
- Erdős, P., Tenenbaum, G., On densities of certain sequences of integers, Proc. Lond. Math. Soc., III. Ser. 59 (1989), 417-438 French. (1989) MR1014865
- Fast, H., 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241-244 French. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- Fridy, J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
- Fridy, J. A., 10.1090/S0002-9939-1993-1181163-6, Proc. Am. Math. Soc. 118 (1993), 1187-1192. (1993) Zbl0776.40001MR1181163DOI10.1090/S0002-9939-1993-1181163-6
- Fridy, J. A., Khan, M. K., 10.1006/jmaa.1998.6118, J. Math. Anal. Appl. 228 (1998), 73-95. (1998) Zbl0919.40006MR1659877DOI10.1006/jmaa.1998.6118
- Fridy, J. A., Orhan, C., 10.1090/S0002-9939-97-04000-8, Proc. Am. Math. Soc. 125 (1997), 3625-3631. (1997) Zbl0883.40003MR1416085DOI10.1090/S0002-9939-97-04000-8
- Gadjiev, A. D., Orhan, C., 10.1216/rmjm/1030539612, Rocky Mt. J. Math. 32 (2002), 129-138. (2002) Zbl1039.41018MR1911352DOI10.1216/rmjm/1030539612
- Katětov, M., Products of filters, Commentat. Math. Univ. Carol. 9 (1968), 173-189. (1968) Zbl0155.50301MR0250257
- Kolk, E., The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991), 41-52. (1991) MR1150232
- Kostyrko, P., Macaj, M., Šalát, T., Strauch, O., 10.1090/S0002-9939-00-05891-3, Proc. Am. Math. Soc. 129 (2001), 2647-2654. (2001) Zbl0966.40001MR1838788DOI10.1090/S0002-9939-00-05891-3
- Maddox, I. J., 10.1017/S0305004100065312, Math. Proc. Camb. Philos. Soc. 104 (1988), 141-145. (1988) Zbl0674.40008MR0938459DOI10.1017/S0305004100065312
- Martinez, V. G., Torrubia, G. S., Blanc, C. T., A statistical convergence application for the Hopfield networks, Information Theory and Applications 15 (2008), 84-88. (2008)
- Miller, H. I., 10.1090/S0002-9947-1995-1260176-6, Trans. Am. Math. Soc. 347 (1995), 1811-1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
- Pehlivan, S., Mamedov, M. A., 10.1080/02331930008844495, Optimization 48 (2000), 93-106. (2000) Zbl0963.40002MR1772096DOI10.1080/02331930008844495
- Penrose, M. D., Yukich, J. E., 10.1214/aoap/1042765669, Ann. Appl. Probab. 13 (2003), 277-303. (2003) Zbl1029.60008MR1952000DOI10.1214/aoap/1042765669
- Rohatgi, V. K., An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1976). (1976) Zbl0354.62001MR0407916
- Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
- Savaş, E., 10.1016/S0020-0255(01)00110-4, Inf. Sci. 137 (2001), 277-282. (2001) Zbl0991.40001MR1857091DOI10.1016/S0020-0255(01)00110-4
- Schoenberg, I. J., 10.2307/2308747, Am. Math. Mon. 66 (1959), 361-375. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747
- Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. (1951)
- Zygmund, A., Trigonometric Series, Cambridge University Press (1979). (1979)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.