Statistical convergence of a sequence of random variables and limit theorems

Sanjoy Ghosal

Applications of Mathematics (2013)

  • Volume: 58, Issue: 4, page 423-437
  • ISSN: 0862-7940

Abstract

top
In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order r and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.

How to cite

top

Ghosal, Sanjoy. "Statistical convergence of a sequence of random variables and limit theorems." Applications of Mathematics 58.4 (2013): 423-437. <http://eudml.org/doc/260667>.

@article{Ghosal2013,
abstract = {In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order $r$ and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.},
author = {Ghosal, Sanjoy},
journal = {Applications of Mathematics},
keywords = {asymptotic density; random variable; statistical convergence; statistical convergence in probability; statistical convergence in mean of order $r$; statistical convergence in distribution; asymptotic density; random variable; statistical convergence; statistical convergence in mean of order ; statistical convergence in distribution},
language = {eng},
number = {4},
pages = {423-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Statistical convergence of a sequence of random variables and limit theorems},
url = {http://eudml.org/doc/260667},
volume = {58},
year = {2013},
}

TY - JOUR
AU - Ghosal, Sanjoy
TI - Statistical convergence of a sequence of random variables and limit theorems
JO - Applications of Mathematics
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 423
EP - 437
AB - In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order $r$ and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.
LA - eng
KW - asymptotic density; random variable; statistical convergence; statistical convergence in probability; statistical convergence in mean of order $r$; statistical convergence in distribution; asymptotic density; random variable; statistical convergence; statistical convergence in mean of order ; statistical convergence in distribution
UR - http://eudml.org/doc/260667
ER -

References

top
  1. Balcerzak, M., Dems, K., Komisarski, A., 10.1016/j.jmaa.2006.05.040, J. Math. Anal. Appl. 328 (2007), 715-729. (2007) Zbl1119.40002MR2285579DOI10.1016/j.jmaa.2006.05.040
  2. Bunimovich, L. A., Sinai, Ya. G., 10.1007/BF02046760, Commun. Math. Phys. 78 (1981), 479-497. (1981) Zbl0459.60099MR0606459DOI10.1007/BF02046760
  3. Erdős, P., Tenenbaum, G., On densities of certain sequences of integers, Proc. Lond. Math. Soc., III. Ser. 59 (1989), 417-438 French. (1989) MR1014865
  4. Fast, H., 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241-244 French. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  5. Fridy, J. A., 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301-313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
  6. Fridy, J. A., 10.1090/S0002-9939-1993-1181163-6, Proc. Am. Math. Soc. 118 (1993), 1187-1192. (1993) Zbl0776.40001MR1181163DOI10.1090/S0002-9939-1993-1181163-6
  7. Fridy, J. A., Khan, M. K., 10.1006/jmaa.1998.6118, J. Math. Anal. Appl. 228 (1998), 73-95. (1998) Zbl0919.40006MR1659877DOI10.1006/jmaa.1998.6118
  8. Fridy, J. A., Orhan, C., 10.1090/S0002-9939-97-04000-8, Proc. Am. Math. Soc. 125 (1997), 3625-3631. (1997) Zbl0883.40003MR1416085DOI10.1090/S0002-9939-97-04000-8
  9. Gadjiev, A. D., Orhan, C., 10.1216/rmjm/1030539612, Rocky Mt. J. Math. 32 (2002), 129-138. (2002) Zbl1039.41018MR1911352DOI10.1216/rmjm/1030539612
  10. Katětov, M., Products of filters, Commentat. Math. Univ. Carol. 9 (1968), 173-189. (1968) Zbl0155.50301MR0250257
  11. Kolk, E., The statistical convergence in Banach spaces, Tartu Ül. Toimetised 928 (1991), 41-52. (1991) MR1150232
  12. Kostyrko, P., Macaj, M., Šalát, T., Strauch, O., 10.1090/S0002-9939-00-05891-3, Proc. Am. Math. Soc. 129 (2001), 2647-2654. (2001) Zbl0966.40001MR1838788DOI10.1090/S0002-9939-00-05891-3
  13. Maddox, I. J., 10.1017/S0305004100065312, Math. Proc. Camb. Philos. Soc. 104 (1988), 141-145. (1988) Zbl0674.40008MR0938459DOI10.1017/S0305004100065312
  14. Martinez, V. G., Torrubia, G. S., Blanc, C. T., A statistical convergence application for the Hopfield networks, Information Theory and Applications 15 (2008), 84-88. (2008) 
  15. Miller, H. I., 10.1090/S0002-9947-1995-1260176-6, Trans. Am. Math. Soc. 347 (1995), 1811-1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
  16. Pehlivan, S., Mamedov, M. A., 10.1080/02331930008844495, Optimization 48 (2000), 93-106. (2000) Zbl0963.40002MR1772096DOI10.1080/02331930008844495
  17. Penrose, M. D., Yukich, J. E., 10.1214/aoap/1042765669, Ann. Appl. Probab. 13 (2003), 277-303. (2003) Zbl1029.60008MR1952000DOI10.1214/aoap/1042765669
  18. Rohatgi, V. K., An Introduction to Probability Theory and Mathematical Statistics, Wiley Series in Probability and Mathematical Statistics John Wiley & Sons, New York (1976). (1976) Zbl0354.62001MR0407916
  19. Šalát, T., On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139-150. (1980) MR0587239
  20. Savaş, E., 10.1016/S0020-0255(01)00110-4, Inf. Sci. 137 (2001), 277-282. (2001) Zbl0991.40001MR1857091DOI10.1016/S0020-0255(01)00110-4
  21. Schoenberg, I. J., 10.2307/2308747, Am. Math. Mon. 66 (1959), 361-375. (1959) Zbl0089.04002MR0104946DOI10.2307/2308747
  22. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. (1951) 
  23. Zygmund, A., Trigonometric Series, Cambridge University Press (1979). (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.