Continua with unique symmetric product
José G. Anaya; Enrique Castañeda-Alvarado; Alejandro Illanes
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 397-406
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAnaya, José G., Castañeda-Alvarado, Enrique, and Illanes, Alejandro. "Continua with unique symmetric product." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 397-406. <http://eudml.org/doc/260680>.
@article{Anaya2013,
abstract = {Let $X$ be a metric continuum. Let $F_\{n\}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_\{n\}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_\{n\}(X)$ is homeomorphic to $F_\{n\}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_\{2\}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_\{2\}(X)$.},
author = {Anaya, José G., Castañeda-Alvarado, Enrique, Illanes, Alejandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {arc continuum; continuum; indecomposable; symmetric product; unique hyperspace; arc continuum; indecomposable; symmetric product; unique hyperspace},
language = {eng},
number = {3},
pages = {397-406},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Continua with unique symmetric product},
url = {http://eudml.org/doc/260680},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Anaya, José G.
AU - Castañeda-Alvarado, Enrique
AU - Illanes, Alejandro
TI - Continua with unique symmetric product
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 397
EP - 406
AB - Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$.
LA - eng
KW - arc continuum; continuum; indecomposable; symmetric product; unique hyperspace; arc continuum; indecomposable; symmetric product; unique hyperspace
UR - http://eudml.org/doc/260680
ER -
References
top- Acosta G., Hernández-Gutiérrez R., Martínez-de-la-Vega V., 10.3336/gm.44.1.12, Glas. Mat. Ser. III 44 (64) (2009), 195–210. Zbl1173.54001MR2525664DOI10.3336/gm.44.1.12
- Castañeda E., Embedding symmetric products in Euclidean spaces, Continuum Theory, Lectures Notes in Pure and Applied Mathematics, 230, Marcel Dekker, New York, 2002, pp. 67–79. Zbl1045.54006MR2001435
- Castañeda E., Illanes A., 10.1016/j.topol.2005.04.006, Topology Appl. 153 (2006), 1434–1450. Zbl1095.54006MR2211209DOI10.1016/j.topol.2005.04.006
- Curtis D., Nhu N.T., 10.1016/0166-8641(85)90005-7, Topology Appl. 19 (1985), 251–260. MR0794488DOI10.1016/0166-8641(85)90005-7
- Hernández-Gutiérrez R., Martínez-de-la-Vega V., Rigidity of symmetric products, preprint.
- Herrera-Carrasco D., López M. de J., Macías-Romero F., Dendrites with unique symmetric products, Topology Proc. 34 (2009), 175–190. Zbl1232.54015MR2511904
- Herrera-Carrasco D., Macías-Romero F., Vázquez-Juárez F., Peano continua with unique symmetric products, J. Math. Res. 4 (2012), 1–9. MR2949114
- Hurewicz W., Wallman H., Dimension Theory, Princeton University Press, Princeton, 1969. Zbl0036.12501MR0006493
- Illanes A., Dendrites with unique hyperspace , JP J. Geom. Topol. 2 (2002), 75–96. Zbl1025.54021MR1942627
- Illanes A., Uniqueness of hyperspaces, Questions Answers Gen. Topology 30 (2012), 21–44. MR2954279
- Illanes A., Models of hyperspaces, Topology Proc. 41 (2013), 39–64. MR2920967
- Illanes A., Martínez-Montejano J.M., Compactifications of with unique hyperspace , Glas. Mat. Ser. III 44 (64) (2009), 457–478. Zbl1185.54008MR2587312
- Illanes A., Nadler S.B., Jr., Hyperspaces; Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl0933.54009MR1670250
- Nadler S.B., Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0757.54009MR1192552
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.