Continua with unique symmetric product

José G. Anaya; Enrique Castañeda-Alvarado; Alejandro Illanes

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 3, page 397-406
  • ISSN: 0010-2628

Abstract

top
Let X be a metric continuum. Let F n ( X ) denote the hyperspace of nonempty subsets of X with at most n elements. We say that the continuum X has unique hyperspace F n ( X ) provided that the following implication holds: if Y is a continuum and F n ( X ) is homeomorphic to F n ( Y ) , then X is homeomorphic to Y . In this paper we prove the following results: (1) if X is an indecomposable continuum such that each nondegenerate proper subcontinuum of X is an arc, then X has unique hyperspace F 2 ( X ) , and (2) let X be an arcwise connected continuum for which there exists a unique point v X such that v is the vertex of a simple triod. Then X has unique hyperspace F 2 ( X ) .

How to cite

top

Anaya, José G., Castañeda-Alvarado, Enrique, and Illanes, Alejandro. "Continua with unique symmetric product." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 397-406. <http://eudml.org/doc/260680>.

@article{Anaya2013,
abstract = {Let $X$ be a metric continuum. Let $F_\{n\}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_\{n\}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_\{n\}(X)$ is homeomorphic to $F_\{n\}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_\{2\}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_\{2\}(X)$.},
author = {Anaya, José G., Castañeda-Alvarado, Enrique, Illanes, Alejandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {arc continuum; continuum; indecomposable; symmetric product; unique hyperspace; arc continuum; indecomposable; symmetric product; unique hyperspace},
language = {eng},
number = {3},
pages = {397-406},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Continua with unique symmetric product},
url = {http://eudml.org/doc/260680},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Anaya, José G.
AU - Castañeda-Alvarado, Enrique
AU - Illanes, Alejandro
TI - Continua with unique symmetric product
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 397
EP - 406
AB - Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$.
LA - eng
KW - arc continuum; continuum; indecomposable; symmetric product; unique hyperspace; arc continuum; indecomposable; symmetric product; unique hyperspace
UR - http://eudml.org/doc/260680
ER -

References

top
  1. Acosta G., Hernández-Gutiérrez R., Martínez-de-la-Vega V., 10.3336/gm.44.1.12, Glas. Mat. Ser. III 44 (64) (2009), 195–210. Zbl1173.54001MR2525664DOI10.3336/gm.44.1.12
  2. Castañeda E., Embedding symmetric products in Euclidean spaces, Continuum Theory, Lectures Notes in Pure and Applied Mathematics, 230, Marcel Dekker, New York, 2002, pp. 67–79. Zbl1045.54006MR2001435
  3. Castañeda E., Illanes A., 10.1016/j.topol.2005.04.006, Topology Appl. 153 (2006), 1434–1450. Zbl1095.54006MR2211209DOI10.1016/j.topol.2005.04.006
  4. Curtis D., Nhu N.T., 10.1016/0166-8641(85)90005-7, Topology Appl. 19 (1985), 251–260. MR0794488DOI10.1016/0166-8641(85)90005-7
  5. Hernández-Gutiérrez R., Martínez-de-la-Vega V., Rigidity of symmetric products, preprint. 
  6. Herrera-Carrasco D., López M. de J., Macías-Romero F., Dendrites with unique symmetric products, Topology Proc. 34 (2009), 175–190. Zbl1232.54015MR2511904
  7. Herrera-Carrasco D., Macías-Romero F., Vázquez-Juárez F., Peano continua with unique symmetric products, J. Math. Res. 4 (2012), 1–9. MR2949114
  8. Hurewicz W., Wallman H., Dimension Theory, Princeton University Press, Princeton, 1969. Zbl0036.12501MR0006493
  9. Illanes A., Dendrites with unique hyperspace F 2 ( X ) , JP J. Geom. Topol. 2 (2002), 75–96. Zbl1025.54021MR1942627
  10. Illanes A., Uniqueness of hyperspaces, Questions Answers Gen. Topology 30 (2012), 21–44. MR2954279
  11. Illanes A., Models of hyperspaces, Topology Proc. 41 (2013), 39–64. MR2920967
  12. Illanes A., Martínez-Montejano J.M., Compactifications of [ 0 , ) with unique hyperspace F n ( X ) , Glas. Mat. Ser. III 44 (64) (2009), 457–478. Zbl1185.54008MR2587312
  13. Illanes A., Nadler S.B., Jr., Hyperspaces; Fundamentals and Recent Advances, Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl0933.54009MR1670250
  14. Nadler S.B., Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl0757.54009MR1192552

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.