A note on the intersection ideal
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 3, page 437-445
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWeiss, Tomasz. "A note on the intersection ideal $\mathcal {M}\cap \mathcal {N}$." Commentationes Mathematicae Universitatis Carolinae 54.3 (2013): 437-445. <http://eudml.org/doc/260682>.
@article{Weiss2013,
abstract = {We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega $ which is not meager additive, yet it satisfies the following property: for each $F_\sigma $ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal \{M\}\cap \mathcal \{N\}$.},
author = {Weiss, Tomasz},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$F_\sigma $ measure zero sets; intersection ideal $\mathcal \{M\}\cap \mathcal \{N\}$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma $-sets; measure-zero set; intersection ideal; meager additive set; -set},
language = {eng},
number = {3},
pages = {437-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the intersection ideal $\mathcal \{M\}\cap \mathcal \{N\}$},
url = {http://eudml.org/doc/260682},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Weiss, Tomasz
TI - A note on the intersection ideal $\mathcal {M}\cap \mathcal {N}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 3
SP - 437
EP - 445
AB - We prove among other theorems that it is consistent with $ZFC$ that there exists a set $X\subseteq 2^\omega $ which is not meager additive, yet it satisfies the following property: for each $F_\sigma $ measure zero set $F$, $X+F$ belongs to the intersection ideal $\mathcal {M}\cap \mathcal {N}$.
LA - eng
KW - $F_\sigma $ measure zero sets; intersection ideal $\mathcal {M}\cap \mathcal {N}$; meager additive sets; sets perfectly meager in the transitive sense; $\gamma $-sets; measure-zero set; intersection ideal; meager additive set; -set
UR - http://eudml.org/doc/260682
ER -
References
top- Bartoszyński T., Judah H., Set Theory, AK Peters, Wellesley, Massachusetts, 1995. MR1350295
- Bartoszyński T., Recław I., 10.1090/conm/192/02346, Contemp. Math., 192, Amer. Math. Soc. Providence, RI, 1996, pp. 25–29. Zbl0838.03037MR1367132DOI10.1090/conm/192/02346
- Bartoszyński T., Shelah S., 10.1007/s00153-003-0184-0, Arch. Math. Logic 42 (2003), 769–779. Zbl1041.03034MR2020043DOI10.1007/s00153-003-0184-0
- Galvin F., Miller A., 10.1016/0166-8641(84)90038-5, Topology Appl. 17 (1984), 145–155. Zbl0551.54001MR0738943DOI10.1016/0166-8641(84)90038-5
- Kraszewski J., Everywhere meagre and everywhere null sets, Houston J. Math. 35 (2009), no. 1, 103–111. Zbl1160.03028MR2491870
- Miller A., Special subsets of the real line, in Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, 1984, pp. 201–233. Zbl0588.54035MR0776624
- Nowik A., Remarks about transitive version of perfectly meager sets, Real Anal. Exchange 22 (1996/97), no. 1, 406–412. MR1433627
- Nowik A., Scheepers M., Weiss T., 10.2307/2586602, J. Symbolic Logic 63 (1998), 301–324. Zbl0901.03036MR1610427DOI10.2307/2586602
- Nowik A., Weiss T., 10.1090/S0002-9939-03-06997-1, Proc. Amer. Math. Soc. 132 (2004), no. 1, 231–237. Zbl1041.03035MR2021267DOI10.1090/S0002-9939-03-06997-1
- Pawlikowski J., 10.1007/BF02761100, Israel J. Math. 93 (1996), 171–183. Zbl0857.28001MR1380640DOI10.1007/BF02761100
- Pawlikowski J., Sabok M., 10.1007/s00153-008-0095-1, Arch. Math. Logic 47 (2008), no. 7–8, 673–676. Zbl1152.28003MR2448952DOI10.1007/s00153-008-0095-1
- Zindulka O., Small sets of reals through the prism of fractal dimensions, preprint, 2010.
- HASH(0x9e03828), Cohen reals and strong measure zero sets – MathOverflow.15. http://mathoverflow.net/questions/63497/ cohen-reals-and-strong-measure-zero-sets, .
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.