Linear operators that preserve Boolean rank of Boolean matrices

LeRoy B. Beasley; Seok-Zun Song

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 435-440
  • ISSN: 0011-4642

Abstract

top
The Boolean rank of a nonzero m × n Boolean matrix A is the minimum number k such that there exist an m × k Boolean matrix B and a k × n Boolean matrix C such that A = B C . In the previous research L. B. Beasley and N. J. Pullman obtained that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks 1 and 2 . In this paper we extend this characterizations of linear operators that preserve the Boolean ranks of Boolean matrices. That is, we obtain that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks 1 and k for some 1 < k m .

How to cite

top

Beasley, LeRoy B., and Song, Seok-Zun. "Linear operators that preserve Boolean rank of Boolean matrices." Czechoslovak Mathematical Journal 63.2 (2013): 435-440. <http://eudml.org/doc/260698>.

@article{Beasley2013,
abstract = {The Boolean rank of a nonzero $m\times n$ Boolean matrix $A$ is the minimum number $k$ such that there exist an $m\times k$ Boolean matrix $B$ and a $k\times n$ Boolean matrix $C$ such that $A=BC$. In the previous research L. B. Beasley and N. J. Pullman obtained that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $2$. In this paper we extend this characterizations of linear operators that preserve the Boolean ranks of Boolean matrices. That is, we obtain that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $k$ for some $1<k\le m$.},
author = {Beasley, LeRoy B., Song, Seok-Zun},
journal = {Czechoslovak Mathematical Journal},
keywords = {Boolean matrix; Boolean rank; Boolean linear operator; Boolean matrix; Boolean rank; Boolean linear operator; preserver},
language = {eng},
number = {2},
pages = {435-440},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear operators that preserve Boolean rank of Boolean matrices},
url = {http://eudml.org/doc/260698},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Beasley, LeRoy B.
AU - Song, Seok-Zun
TI - Linear operators that preserve Boolean rank of Boolean matrices
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 435
EP - 440
AB - The Boolean rank of a nonzero $m\times n$ Boolean matrix $A$ is the minimum number $k$ such that there exist an $m\times k$ Boolean matrix $B$ and a $k\times n$ Boolean matrix $C$ such that $A=BC$. In the previous research L. B. Beasley and N. J. Pullman obtained that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $2$. In this paper we extend this characterizations of linear operators that preserve the Boolean ranks of Boolean matrices. That is, we obtain that a linear operator preserves Boolean rank if and only if it preserves Boolean ranks $1$ and $k$ for some $1<k\le m$.
LA - eng
KW - Boolean matrix; Boolean rank; Boolean linear operator; Boolean matrix; Boolean rank; Boolean linear operator; preserver
UR - http://eudml.org/doc/260698
ER -

References

top
  1. Beasley, L. B., Li, C.-K., Pierce, S., 10.1080/03081089208818185, Linear Multilinear Algebra 33 (1992), 109-119. (1992) Zbl0767.15006MR1346786DOI10.1080/03081089208818185
  2. Beasley, L. B., Pullman, N. J., 10.1016/0024-3795(84)90158-7, Linear Algebra Appl. 59 (1984), 55-77. (1984) Zbl0536.20044MR0743045DOI10.1016/0024-3795(84)90158-7
  3. Kang, K.-T., Song, S.-Z., Heo, S.-H., Jun, Y.-B., Linear preserves of regular matrices over general Boolean algebras, Bull. Malays. Math. Sci. Soc. 34 (2011), 113-125. (2011) MR2783783
  4. Kim, K. H., Boolean Matrix Theory and Applications, Pure and Applied Mathematics 70 Marcel Dekker, New York (1982). (1982) Zbl0495.15003MR0655414
  5. Song, S.-Z., 10.1090/S0002-9939-1993-1184086-1, Proc. Am. Math. Soc. 119 (1993), 1085-1088. (1993) Zbl0802.15006MR1184086DOI10.1090/S0002-9939-1993-1184086-1

NotesEmbed ?

top

You must be logged in to post comments.