Almost Abelian rings
Communications in Mathematics (2013)
- Volume: 21, Issue: 1, page 15-30
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topWei, Junchao. "Almost Abelian rings." Communications in Mathematics 21.1 (2013): 15-30. <http://eudml.org/doc/260701>.
@article{Wei2013,
abstract = {A ring $R$ is defined to be left almost Abelian if $ae=0$ implies $aRe=0$ for $a\in N(R)$ and $e\in E(R)$, where $E(R)$ and $N(R)$ stand respectively for the set of idempotents and the set of nilpotents of $R$. Some characterizations and properties of such rings are included. It follows that if $R$ is a left almost Abelian ring, then $R$ is $\pi $-regular if and only if $N(R)$ is an ideal of $R$ and $R/N(R)$ is regular. Moreover it is proved that (1) $R$ is an Abelian ring if and only if $R$ is a left almost Abelian left idempotent reflexive ring. (2) $R$ is strongly regular if and only if $R$ is regular and left almost Abelian. (3) A left almost Abelian clean ring is an exchange ring. (4) For a left almost Abelian ring $R$, it is an exchange $(S,2)$ ring if and only if $\mathbb \{Z\}/2\mathbb \{Z\}$ is not a homomorphic image of $R$.},
author = {Wei, Junchao},
journal = {Communications in Mathematics},
keywords = {left almost Abelian rings; $\pi $-regular rings; Abelian rings; $(S,2)$ rings; left almost Abelian rings; -regular rings; -rings; nilpotent elements; idempotents},
language = {eng},
number = {1},
pages = {15-30},
publisher = {University of Ostrava},
title = {Almost Abelian rings},
url = {http://eudml.org/doc/260701},
volume = {21},
year = {2013},
}
TY - JOUR
AU - Wei, Junchao
TI - Almost Abelian rings
JO - Communications in Mathematics
PY - 2013
PB - University of Ostrava
VL - 21
IS - 1
SP - 15
EP - 30
AB - A ring $R$ is defined to be left almost Abelian if $ae=0$ implies $aRe=0$ for $a\in N(R)$ and $e\in E(R)$, where $E(R)$ and $N(R)$ stand respectively for the set of idempotents and the set of nilpotents of $R$. Some characterizations and properties of such rings are included. It follows that if $R$ is a left almost Abelian ring, then $R$ is $\pi $-regular if and only if $N(R)$ is an ideal of $R$ and $R/N(R)$ is regular. Moreover it is proved that (1) $R$ is an Abelian ring if and only if $R$ is a left almost Abelian left idempotent reflexive ring. (2) $R$ is strongly regular if and only if $R$ is regular and left almost Abelian. (3) A left almost Abelian clean ring is an exchange ring. (4) For a left almost Abelian ring $R$, it is an exchange $(S,2)$ ring if and only if $\mathbb {Z}/2\mathbb {Z}$ is not a homomorphic image of $R$.
LA - eng
KW - left almost Abelian rings; $\pi $-regular rings; Abelian rings; $(S,2)$ rings; left almost Abelian rings; -regular rings; -rings; nilpotent elements; idempotents
UR - http://eudml.org/doc/260701
ER -
References
top- Badawi, A., 10.1080/00927879708825906, Comm. Algebra, 25, 4, 1997, 1009-1021, (1997) Zbl0881.16003MR1437658DOI10.1080/00927879708825906
- Camillo, V.P., Yu, H.P., 10.1080/00927879408825098, Comm. Algebra, 22, 12, 1994, 4737-4749, (1994) Zbl0811.16002MR1285703DOI10.1080/00927879408825098
- Chen, H.Y., A note on potent elements, Kyungpook, Math. J., 45, 2005, 519-526, (2005) MR2205953
- Chen, W.X., 10.1155/2007/63171, Intern. J. Math. Sci., 23, 2007, 1-10, (2007) Zbl1152.16009MR2320775DOI10.1155/2007/63171
- Ehrlich, G., Unit regular rings, Portugal. Math., 27, 1968, 209-212, (1968) Zbl0201.03901MR0266962
- Henriksen, M., 10.1016/0021-8693(74)90013-1, J. Algebra, 31, 1974, 182-193, (1974) MR0349745DOI10.1016/0021-8693(74)90013-1
- Kim, N.K., Nam, S.B., Kim, J.Y., 10.1080/00927879908826551, Comm. Algebra, 27, 5, 1999, 2087-2096, (1999) Zbl0923.16008MR1683853DOI10.1080/00927879908826551
- Lam, T.Y., Dugas, A.S., 10.1016/j.jpaa.2004.08.011, J. Pure Appl. Algebra, 195, 2005, 243-259, (2005) Zbl1071.16003MR2114274DOI10.1016/j.jpaa.2004.08.011
- Nicholson, W.K., 10.1090/S0002-9947-1977-0439876-2, Trans. Amer. Math. Soc., 229, 1977, 269-278, (1977) Zbl0352.16006MR0439876DOI10.1090/S0002-9947-1977-0439876-2
- Nicholson, W.K., 10.1080/00927879908826649, Comm. Algebra, 27, 8, 1999, 3583-3592, (1999) MR1699586DOI10.1080/00927879908826649
- Tuganbaev, A., Rings close to regular, 2002, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 545, (2002) Zbl1120.16012MR1958361
- Vaserstein, L.N., 10.1016/0022-4049(84)90044-6, J. Pure Appl. Algebra, 34, 1984, 319-330, (1984) MR0772066DOI10.1016/0022-4049(84)90044-6
- Wang, S.Q., On op-idemotents, Kyungpook Math. J., 45, 2005, 171-175, (2005) MR2160756
- Warfield, R.B., 10.1090/S0002-9939-1969-0242886-2, Proc. Amer. Math. Soc., 22, 1969, 460-465, (1969) Zbl0176.31401MR0242886DOI10.1090/S0002-9939-1969-0242886-2
- Warfield, R.B., 10.1007/BF01419573, Math. Ann., 199, 1972, 31-36, (1972) Zbl0228.16012MR0332893DOI10.1007/BF01419573
- Wei, J.C., Certain rings whose simple singular modules are nil-injective, Turk. J. Math., 32, 2008, 393-408, (2008) Zbl1183.16004MR2473657
- Wei, J.C., Chen, J.H., -injective rings, Intern. Electr. Jour. Algebra, 2, 2007, 1-21, (2007) Zbl1123.16003MR2320722
- Wu, T., Chen, P., On finitely generated projective modules and exchange rings, Algebra Coll., 9, 4, 2002, 433-444, (2002) Zbl1023.16002MR1933852
- Yu, H.P., 10.1017/S0017089500030342, Glasgow Math. J., 37, 1995, 21-31, (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.