A Class of Balanced Non-Uniserial Rings.
We introduce a class of rings which is a generalization of reflexive rings and -reversible rings. Let be a ring with identity and denote the Jacobson radical of . A ring is called -reflexive if for any , implies . We give some characterizations of a -reflexive ring. We prove that some results of reflexive rings can be extended to -reflexive rings for this general setting. We conclude some relations between -reflexive rings and some related rings. We investigate some extensions of...
In this paper, we introduce a subclass of strongly clean rings. Let be a ring with identity, be the Jacobson radical of , and let denote the set of all elements of which are nilpotent in . An element is called very -clean provided that there exists an idempotent such that and or is an element of . A ring is said to be very -clean in case every element in is very -clean. We prove that every very -clean ring is strongly -rad clean and has stable range one. It is shown...
A ring is defined to be left almost Abelian if implies for and , where and stand respectively for the set of idempotents and the set of nilpotents of . Some characterizations and properties of such rings are included. It follows that if is a left almost Abelian ring, then is -regular if and only if is an ideal of and is regular. Moreover it is proved that (1) is an Abelian ring if and only if is a left almost Abelian left idempotent reflexive ring. (2) is strongly...
Si considerano le estensioni chiuse di un -modulo mediante un -modulo nel caso in cui sia un anello semi-artiniano, cioè un anello con la proprietà che per ogni quoziente sia soc . Tali estensioni sono caratterizzate dal fatto che deve essere un sottomodulo semi-puro di .
We provide some characterizations of rings for which every (finitely generated) module belonging to a class of -modules is a direct sum of cyclic submodules. We focus on the cases, where the class is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.