Interior and Closure Operators on Commutative Bounded Residuated Lattices

Jiří Rachůnek; Zdeněk Svoboda

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 1, page 121-134
  • ISSN: 0231-9721

Abstract

top
Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.

How to cite

top

Rachůnek, Jiří, and Svoboda, Zdeněk. "Interior and Closure Operators on Commutative Bounded Residuated Lattices." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.1 (2013): 121-134. <http://eudml.org/doc/260702>.

@article{Rachůnek2013,
abstract = {Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.},
author = {Rachůnek, Jiří, Svoboda, Zdeněk},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {residuated lattice; bounded integral residuated lattice; interior operator; closure operator; residuated lattice; bounded integral residuated lattice; interior operator; closure operator},
language = {eng},
number = {1},
pages = {121-134},
publisher = {Palacký University Olomouc},
title = {Interior and Closure Operators on Commutative Bounded Residuated Lattices},
url = {http://eudml.org/doc/260702},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Svoboda, Zdeněk
TI - Interior and Closure Operators on Commutative Bounded Residuated Lattices
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 1
SP - 121
EP - 134
AB - Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras.
LA - eng
KW - residuated lattice; bounded integral residuated lattice; interior operator; closure operator; residuated lattice; bounded integral residuated lattice; interior operator; closure operator
UR - http://eudml.org/doc/260702
ER -

References

top
  1. Balbes, R., Dwinger, P., Distributive Lattices, University Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
  2. Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D., Algebraic Foundations of Many-valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  3. Cignoli, R., Torrens, A., 10.1002/malq.200310082, Math. Log. Quart. 50 (2004), 111–125. (2004) Zbl1045.03026MR2037731DOI10.1002/malq.200310082
  4. Ciungu, L. C., Classes of residuated lattices, Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180–207. (2006) Zbl1119.03343MR2359903
  5. Dvurečenskij, A., Rachůnek, J., On Riečan and Bosbach states for bounded R -monoids, Math. Slovaca 56 (2006), 487–500. (2006) MR2293582
  6. Dvurečenskij, A., Rachůnek, J., 10.1016/j.disc.2005.12.024, Discrete Math. 306 (2006), 1317–1326. (2006) Zbl1105.06011MR2237716DOI10.1016/j.disc.2005.12.024
  7. Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets Syst. 124 (2001), 271–288. (2001) Zbl0994.03017MR1860848
  8. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, Amsterdam, 2007. (2007) Zbl1171.03001MR2531579
  9. Hájek, P., Metamathematics of Fuzzy Logic, Springer, Dordrecht, 1998. (1998) MR1900263
  10. Jipsen, P., Montagna, A., 10.1007/s00012-009-2106-4, Algebra Universalis 60 (2009), 381–404. (2009) Zbl1192.06011MR2504748DOI10.1007/s00012-009-2106-4
  11. Jipsen, P., Tsinakis, C., A Survey of Residuated Lattices, In: Ordered Algebraic Structures, Kluwer, Dordrecht, (2006), 19–56. (2006) MR2083033
  12. Rachůnek, J., Slezák, V., 10.1007/s10587-006-0053-1, Czechoslovak Math. J. 56 (2007), 755–763. (2007) DOI10.1007/s10587-006-0053-1
  13. Rachůnek, J., Švrček, F., MV-algebras with additive closure operators, Acta Univ. Palacki. Olomouc., Fac. Rer. Nat., Math. 39 (2000), 183–189. (2000) Zbl1039.06005MR1826361
  14. Rachůnek, J., Švrček, F., 10.7151/dmgaa.1132, Discuss. Math., Gen. Alg. Appl. 28 (2008), 11–27. (2008) Zbl1227.06014MR2437765DOI10.7151/dmgaa.1132
  15. Sikorski, R., Boolean Algebras, 2nd edition, Springer-Verlag, Berlin–Göttingen–Heidelbeg–New York, 1963. (1963) Zbl0122.26101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.