MV-algebras with additive closure operators
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2000)
- Volume: 39, Issue: 1, page 183-189
- ISSN: 0231-9721
Access Full Article
topHow to cite
topReferences
top- Chang C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) Zbl0084.00704MR0094302
- Chang C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. (1959) Zbl0093.01104MR0122718
- Cignoli R. O. L., Mundici D., D’Ottaviano I. M. L., Algebraic Foundations of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl0937.06009MR1786097
- Rachůnek J., DRl-semigroups and MV-algebras, Czechoslovak Math. J. 48, 123 (1998), 365-372. (1998) MR1624268
- Rachůnek J., MV-algebras are categorically equivalent to a class of DRli-semigroups, Math. Bohemica 123 (1998), 437-441. (1998) MR1667115
- Rasiova H., Sikorski R., The Mathematics of Metamathematics, Panstw. Wyd. Nauk., Warszawa, 1963. (1963) MR0163850
- Turunen E., Mathematics Behind Fuzzy Logic, Springer Physica-Verlag, Heidelberg-New York, 1999. (1999) Zbl0940.03029MR1716958
Citations in EuDML Documents
top- Filip Švrček, Additive closure operators on abelian unital -groups
- Magdalena Harlenderová, Jiří Rachůnek, Modal operators on MV-algebras
- Jiří Rachůnek, Zdeněk Svoboda, Interior and Closure Operators on Commutative Bounded Residuated Lattices
- Jiří Rachůnek, Zdeněk Svoboda, Interior and closure operators on bounded residuated lattices
- Jiří Rachůnek, Filip Švrček, Interior and closure operators on bounded commutative residuated l-monoids