Parameter influence on passive dynamic walking of a robot with flat feet

Xiangze Lin; Haibo Du; Shihua Li

Kybernetika (2013)

  • Volume: 49, Issue: 5, page 792-808
  • ISSN: 0023-5954

Abstract

top
The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical simulations are given to verify our conclusion.

How to cite

top

Lin, Xiangze, Du, Haibo, and Li, Shihua. "Parameter influence on passive dynamic walking of a robot with flat feet." Kybernetika 49.5 (2013): 792-808. <http://eudml.org/doc/260704>.

@article{Lin2013,
abstract = {The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical simulations are given to verify our conclusion.},
author = {Lin, Xiangze, Du, Haibo, Li, Shihua},
journal = {Kybernetika},
keywords = {biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos; biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos},
language = {eng},
number = {5},
pages = {792-808},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Parameter influence on passive dynamic walking of a robot with flat feet},
url = {http://eudml.org/doc/260704},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Lin, Xiangze
AU - Du, Haibo
AU - Li, Shihua
TI - Parameter influence on passive dynamic walking of a robot with flat feet
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 5
SP - 792
EP - 808
AB - The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical simulations are given to verify our conclusion.
LA - eng
KW - biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos; biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos
UR - http://eudml.org/doc/260704
ER -

References

top
  1. Borzova, E., Hurmuzlu, Y., 10.1016/j.automatica.2003.10.015, Automatica 40 (2004), 4, 621-629. Zbl1070.93033MR2151480DOI10.1016/j.automatica.2003.10.015
  2. Collins, S., Ruina, A., Tedrake, R., Wisse, M., 10.1126/science.1107799, Science 307 (2005), 1082-1085. DOI10.1126/science.1107799
  3. Garcia, M., Chatterjee, A., Ruina, A., Coleman, M., 10.1115/1.2798313, J. Biomech. Engrg. 120 (1998), 2, 281-288. DOI10.1115/1.2798313
  4. Goswami, A., Thuilot, B, Espiau, B., Compass-like biped robot Part I: Stability and bifurcation of passive gaits., IINRIA Res. Rep. No. 2996, 1996. 
  5. Goswami, A., Thuilot, B., Espiau, B., 10.1177/027836499801701202, Internat. J. Robotics Res. 17 (1998), 12, 1282-1301. DOI10.1177/027836499801701202
  6. Grizzle, J. W., Abba, G., Plestan, F., 10.1109/9.898695, IEEE Trans. Automat. Control 46 (2001), 1, 51-64. Zbl0992.93058MR1809465DOI10.1109/9.898695
  7. Hiskens, I., Stability of hybrid system limit cycles: Application to the compass gait biped robot., In: Proc. IEEE Conference on Decision and Control, Orlando 2001. 
  8. Holm, J. K., Control of Passive Dynamic Robots Using Artificial Potential Energy Fields., M. S. Thesis, Univ. Illinois Urbana-Champaign 2005. 
  9. Holm, J. K., Lee, D. J., Spong, M. W., Time scaling for speed regulation in bipedal locomotion., In: Proc. IEEE Conference Robotics Automation, Rome 2007, pp. 3603-3608. 
  10. Ikemata, Y., Sano, A., Fusimoto, H., Analysis of stable limit cycle in passive walking., In: SICE Anual Conference, Fubukui 2003, pp. 117-122. 
  11. Kim, J., Choi, C., Spong, M. W., Passive dynamic walking with symmetric fixed flat feet., In: Proc. IEEE International Conference on Control and Automation, Guangzhou 2007, pp. 24-30. 
  12. Kuo, A. D., 10.1177/02783649922066655, Internat. J. Robotics Res. 18 (1999), 9, 917-930. DOI10.1177/02783649922066655
  13. Kurz, M. J., Judkins, T. N., Arellano, C., Scott-Pandorf, M., 10.1016/j.jbiomech.2008.01.007, J. Biomech. 41 (2008), 6, 1310-1316. DOI10.1016/j.jbiomech.2008.01.007
  14. Kurz, M. J., Stergiou, N., 10.1007/s00422-005-0579-6, Biolog. Cybernet. 93 (2005), 3, 213-221. Zbl1116.92005DOI10.1007/s00422-005-0579-6
  15. Kurz, M. J., Stergiou, N., 10.1115/1.2486008, J. Biomech. Engrg. 129 (2007), 2, 216-222. DOI10.1115/1.2486008
  16. Lin, X., Ding, Y., Shen, M., Li, S., Feedback stabilization of unstable periodic orbits for chaotic passive compass-like biped robot., In: Proc. 7th World Congress on Intelligent Control and Automation, Chongqing 2008, pp. 7285-7290. 
  17. McGeer, T., 10.1177/027836499000900206, Internat. J. Robotics Res. 9 (1990), 2, 62-68. DOI10.1177/027836499000900206
  18. McGeer, T., Passive walking with knees., In: Proc. IEEE Conference on Robotics and Automation, Cincinnati 1990, pp. 1640-1645. 
  19. Miller, D. J., Stergiou, N., Kurz, M. J., 10.1016/j.jbiomech.2005.10.019, J. Biomech. 39 (2006), 15, 2873-2876. DOI10.1016/j.jbiomech.2005.10.019
  20. Ott, E., Chaos in Dynamical Systems., Cambridge University Press, Cambridge 1993. Zbl1006.37001MR1924000
  21. Parker, T. S., Chua, L. O., Practical Numerical Algorithms for Chaotic Systems., Springer-Verlag, New York 1989. Zbl0692.58001MR1009561
  22. Seydel, R., Practical Bifurcation and Stability Analysis. Second edition., Springer-Verlag, New York 1994. MR1314200
  23. Spong, M. W., Passivity based control of the compass gait biped., In: Proc. World Congress of IFAC, Beijing 1999, pp. 19-24. 
  24. Spong, M. W., Bhatia, G., Further results on control of the compass gait biped., In: Proc. IEEE International Conference on Intelligent Robots and Systems, Las Vegas 2003, pp. 1933-1938. 
  25. Spong, M. W., Bullo, F., 10.1109/TAC.2005.851449, IEEE Trans. Automat. Control 50 (2005), 7, 1025-1031. MR2151568DOI10.1109/TAC.2005.851449
  26. Stergiou, N., Buzzi, U. H., Kurz, M. J., Heidel, J., Nonlinear tools in human movement., In: Innovative Analysis of Human Movement, Human Kinetics (N. Stergiou, ed.), Champaign 2004. 
  27. Wisse, M., Schwab, A. L., Helm, F. C. T. Van der, 10.1017/S0263574704000475, Robotica 22 (2004), 6, 681-688. DOI10.1017/S0263574704000475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.