Page 1

Displaying 1 – 5 of 5

Showing per page

Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium

Zhouchao Wei, Zhen Wang (2013)

Kybernetika

By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived...

Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei, Zhen Wang (2013)

Kybernetika

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.

Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation

Zhen Wang, Wei Sun, Zhouchao Wei, Xiaojian Xi (2014)

Kybernetika

Hopf bifurcation, dynamics at infinity and robust modified function projective synchronization (RMFPS) problem for Sprott E system with quadratic perturbation were studied in this paper. By using the method of projection for center manifold computation, the subcritical and the supercritical Hopf bifurcation were analyzed and obtained. Then, in accordance with the Poincare compactification of polynomial vector field in R 3 , the dynamical behaviors at infinity were described completely. Moreover, a...

Parameter influence on passive dynamic walking of a robot with flat feet

Xiangze Lin, Haibo Du, Shihua Li (2013)

Kybernetika

The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased,...

Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity

Zhen Wang, Wei Sun, Zhouchao Wei, Shanwen Zhang (2017)

Kybernetika

Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity...

Currently displaying 1 – 5 of 5

Page 1