On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum

Yongguang Du; Huaning Liu

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 461-473
  • ISSN: 0011-4642

Abstract

top
The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers m , n , k , q , with k 1 and q 3 , and Dirichlet characters χ , χ ¯ modulo q we define a mixed exponential sum C ( m , n ; k ; χ ; χ ¯ ; q ) = a = 1 q w i d t h 0 p t h e i g h t 1 e m ' χ ( a ) G k ( a , χ ¯ ) e m a k + n a k ¯ q , with Dirichlet character χ and general Gauss sum G k ( a , χ ¯ ) as coefficient, where ' denotes the summation over all a such that ( a , q ) = 1 , a a ¯ 1 mod q and e ( y ) = e 2 π i y . We mean value of m χ χ ¯ | C ( m , n ; k ; χ ; χ ¯ ; q ) | 4 , and give an exact computational formula for it.

How to cite

top

Du, Yongguang, and Liu, Huaning. "On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum." Czechoslovak Mathematical Journal 63.2 (2013): 461-473. <http://eudml.org/doc/260711>.

@article{Du2013,
abstract = {The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\ge \{1\}$ and $q\ge \{3\}$, and Dirichlet characters $\chi $, $\bar\{\chi \}$ modulo $q$ we define a mixed exponential sum \[ C(m,n;k;\chi ;\bar\{\chi \};q)= \sum \limits \_\{a=1\}^\{q\}\{\hspace\{-2.22214pt\}\vrule width0pt height1em\}^\{\prime \} \chi (a)G\_\{k\}(a,\bar\{\chi \})e \Big (\frac\{ma^\{k\}+n\overline\{a^\{k\}\}\}\{q\}\Big ), \] with Dirichlet character $\chi $ and general Gauss sum $G_\{k\}(a,\bar\{\chi \})$ as coefficient, where $\sum \nolimits ^\{\prime \}$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar\{a\}\equiv \{1\}~\@mod \;q$ and $e(y)=\{\rm e\}^\{2\pi \{\rm i\} y\}$. We mean value of \[ \sum \_\{m\}\sum \_\{\chi \}\sum \_\{\bar\{\chi \}\}|C(m,n;k;\chi ;\bar\{\chi \};q)|^\{4\}, \] and give an exact computational formula for it.},
author = {Du, Yongguang, Liu, Huaning},
journal = {Czechoslovak Mathematical Journal},
keywords = {mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula; Kloosterman sum; general Gauss sum; Dirichlet character},
language = {eng},
number = {2},
pages = {461-473},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum},
url = {http://eudml.org/doc/260711},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Du, Yongguang
AU - Liu, Huaning
TI - On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 461
EP - 473
AB - The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\ge {1}$ and $q\ge {3}$, and Dirichlet characters $\chi $, $\bar{\chi }$ modulo $q$ we define a mixed exponential sum \[ C(m,n;k;\chi ;\bar{\chi };q)= \sum \limits _{a=1}^{q}{\hspace{-2.22214pt}\vrule width0pt height1em}^{\prime } \chi (a)G_{k}(a,\bar{\chi })e \Big (\frac{ma^{k}+n\overline{a^{k}}}{q}\Big ), \] with Dirichlet character $\chi $ and general Gauss sum $G_{k}(a,\bar{\chi })$ as coefficient, where $\sum \nolimits ^{\prime }$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar{a}\equiv {1}~\@mod \;q$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of \[ \sum _{m}\sum _{\chi }\sum _{\bar{\chi }}|C(m,n;k;\chi ;\bar{\chi };q)|^{4}, \] and give an exact computational formula for it.
LA - eng
KW - mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula; Kloosterman sum; general Gauss sum; Dirichlet character
UR - http://eudml.org/doc/260711
ER -

References

top
  1. Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
  2. Calderón, C., Velasco, M. J. De, Zarate, M. J., 10.1007/s10474-010-0043-5, Acta Math. Hung. 130 (2011), 203-222. (2011) Zbl1240.11090MR2765565DOI10.1007/s10474-010-0043-5
  3. Chalk, J. H. H., Smith, R. A., 10.4064/aa-18-1-191-212, Acta Arith. 18 (1971), 191-212. (1971) Zbl0219.12021MR0309880DOI10.4064/aa-18-1-191-212
  4. Davenport, H., On certain exponential sums, J. Reine Angew. Math. 169 (1933), 158-176. (1933) Zbl0006.29501
  5. Estermann, T., 10.1112/S0025579300002187, Mathematika, Lond. 8 (1961), 83-86. (1961) Zbl0114.26302MR0126420DOI10.1112/S0025579300002187
  6. Evans, R., 10.1007/s11856-010-0014-0, Isr. J. Math. 175 (2010), 349-362. (2010) Zbl1242.11059MR2607549DOI10.1007/s11856-010-0014-0
  7. Gong, K., Wan, D. Q., Power moments of Kloosterman sums, . 
  8. Kanemitsu, S., Tanigawa, Y., Yi, Y., Zhang, W. P., On general Kloosterman sums, Ann. Univ. Sci. Budap. Rolondo Eötvös, Sect. Comput. 22 (2003), 151-160. (2003) Zbl1108.11059MR2094014
  9. Kloosterman, H. D., 10.1007/BF02564120, Acta Math. 49 (1927), 407-464. (1927) MR1555249DOI10.1007/BF02564120
  10. Liu, H., 10.1090/S0002-9939-07-09075-2, Proc. Am. Math. Soc. 136 (2008), 1193-1203. (2008) Zbl1145.11063MR2367093DOI10.1090/S0002-9939-07-09075-2
  11. Liu, H., 10.1016/j.jmaa.2009.08.064, J. Math. Anal. Appl. 361 (2010), 205-223. (2010) MR2567295DOI10.1016/j.jmaa.2009.08.064
  12. Liu, H., Zhang, W., 10.1142/S0252959904000093, Chin. Ann. Math., Ser. B 25 (2004), 97-102. (2004) Zbl1048.11065MR2033954DOI10.1142/S0252959904000093
  13. Wang, T., Zhang, W. P., On the fourth and sixth power mean of the mixed exponential sums, Sci. China Math. 41 (2011), 1-6. (2011) 
  14. Xu, Z., Zhang, T., Zhang, W., 10.1016/j.jnt.2006.07.005, J. Number Theory 123 (2007), 352-362. (2007) Zbl1197.11103MR2300819DOI10.1016/j.jnt.2006.07.005
  15. Ye, Y., 10.4064/aa-93-3-221-235, Acta Arith. 93 (2000), 221-235. (2000) Zbl0953.11028MR1759916DOI10.4064/aa-93-3-221-235
  16. Zhang, W., 10.1016/j.jnt.2010.08.008, J. Number Theory 131 (2011), 228-238. (2011) Zbl1218.11074MR2736853DOI10.1016/j.jnt.2010.08.008
  17. Zhang, W., 10.1016/S0022-314X(03)00154-9, J. Number Theory 104 (2004), 156-161. (2004) Zbl1039.11052MR2021631DOI10.1016/S0022-314X(03)00154-9
  18. Zhang, W., Yi, Y., He, X., 10.1006/jnth.2000.2515, J. Number Theory 84 (2000), 199-213. (2000) Zbl0958.11061MR1795790DOI10.1006/jnth.2000.2515

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.