On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 461-473
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDu, Yongguang, and Liu, Huaning. "On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum." Czechoslovak Mathematical Journal 63.2 (2013): 461-473. <http://eudml.org/doc/260711>.
@article{Du2013,
abstract = {The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\ge \{1\}$ and $q\ge \{3\}$, and Dirichlet characters $\chi $, $\bar\{\chi \}$ modulo $q$ we define a mixed exponential sum \[ C(m,n;k;\chi ;\bar\{\chi \};q)= \sum \limits \_\{a=1\}^\{q\}\{\hspace\{-2.22214pt\}\vrule width0pt height1em\}^\{\prime \} \chi (a)G\_\{k\}(a,\bar\{\chi \})e \Big (\frac\{ma^\{k\}+n\overline\{a^\{k\}\}\}\{q\}\Big ), \]
with Dirichlet character $\chi $ and general Gauss sum $G_\{k\}(a,\bar\{\chi \})$ as coefficient, where $\sum \nolimits ^\{\prime \}$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar\{a\}\equiv \{1\}~\@mod \;q$ and $e(y)=\{\rm e\}^\{2\pi \{\rm i\} y\}$. We mean value of \[ \sum \_\{m\}\sum \_\{\chi \}\sum \_\{\bar\{\chi \}\}|C(m,n;k;\chi ;\bar\{\chi \};q)|^\{4\}, \]
and give an exact computational formula for it.},
author = {Du, Yongguang, Liu, Huaning},
journal = {Czechoslovak Mathematical Journal},
keywords = {mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula; Kloosterman sum; general Gauss sum; Dirichlet character},
language = {eng},
number = {2},
pages = {461-473},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum},
url = {http://eudml.org/doc/260711},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Du, Yongguang
AU - Liu, Huaning
TI - On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 461
EP - 473
AB - The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan’s sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\ge {1}$ and $q\ge {3}$, and Dirichlet characters $\chi $, $\bar{\chi }$ modulo $q$ we define a mixed exponential sum \[ C(m,n;k;\chi ;\bar{\chi };q)= \sum \limits _{a=1}^{q}{\hspace{-2.22214pt}\vrule width0pt height1em}^{\prime } \chi (a)G_{k}(a,\bar{\chi })e \Big (\frac{ma^{k}+n\overline{a^{k}}}{q}\Big ), \]
with Dirichlet character $\chi $ and general Gauss sum $G_{k}(a,\bar{\chi })$ as coefficient, where $\sum \nolimits ^{\prime }$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar{a}\equiv {1}~\@mod \;q$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of \[ \sum _{m}\sum _{\chi }\sum _{\bar{\chi }}|C(m,n;k;\chi ;\bar{\chi };q)|^{4}, \]
and give an exact computational formula for it.
LA - eng
KW - mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula; Kloosterman sum; general Gauss sum; Dirichlet character
UR - http://eudml.org/doc/260711
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
- Calderón, C., Velasco, M. J. De, Zarate, M. J., 10.1007/s10474-010-0043-5, Acta Math. Hung. 130 (2011), 203-222. (2011) Zbl1240.11090MR2765565DOI10.1007/s10474-010-0043-5
- Chalk, J. H. H., Smith, R. A., 10.4064/aa-18-1-191-212, Acta Arith. 18 (1971), 191-212. (1971) Zbl0219.12021MR0309880DOI10.4064/aa-18-1-191-212
- Davenport, H., On certain exponential sums, J. Reine Angew. Math. 169 (1933), 158-176. (1933) Zbl0006.29501
- Estermann, T., 10.1112/S0025579300002187, Mathematika, Lond. 8 (1961), 83-86. (1961) Zbl0114.26302MR0126420DOI10.1112/S0025579300002187
- Evans, R., 10.1007/s11856-010-0014-0, Isr. J. Math. 175 (2010), 349-362. (2010) Zbl1242.11059MR2607549DOI10.1007/s11856-010-0014-0
- Gong, K., Wan, D. Q., Power moments of Kloosterman sums, .
- Kanemitsu, S., Tanigawa, Y., Yi, Y., Zhang, W. P., On general Kloosterman sums, Ann. Univ. Sci. Budap. Rolondo Eötvös, Sect. Comput. 22 (2003), 151-160. (2003) Zbl1108.11059MR2094014
- Kloosterman, H. D., 10.1007/BF02564120, Acta Math. 49 (1927), 407-464. (1927) MR1555249DOI10.1007/BF02564120
- Liu, H., 10.1090/S0002-9939-07-09075-2, Proc. Am. Math. Soc. 136 (2008), 1193-1203. (2008) Zbl1145.11063MR2367093DOI10.1090/S0002-9939-07-09075-2
- Liu, H., 10.1016/j.jmaa.2009.08.064, J. Math. Anal. Appl. 361 (2010), 205-223. (2010) MR2567295DOI10.1016/j.jmaa.2009.08.064
- Liu, H., Zhang, W., 10.1142/S0252959904000093, Chin. Ann. Math., Ser. B 25 (2004), 97-102. (2004) Zbl1048.11065MR2033954DOI10.1142/S0252959904000093
- Wang, T., Zhang, W. P., On the fourth and sixth power mean of the mixed exponential sums, Sci. China Math. 41 (2011), 1-6. (2011)
- Xu, Z., Zhang, T., Zhang, W., 10.1016/j.jnt.2006.07.005, J. Number Theory 123 (2007), 352-362. (2007) Zbl1197.11103MR2300819DOI10.1016/j.jnt.2006.07.005
- Ye, Y., 10.4064/aa-93-3-221-235, Acta Arith. 93 (2000), 221-235. (2000) Zbl0953.11028MR1759916DOI10.4064/aa-93-3-221-235
- Zhang, W., 10.1016/j.jnt.2010.08.008, J. Number Theory 131 (2011), 228-238. (2011) Zbl1218.11074MR2736853DOI10.1016/j.jnt.2010.08.008
- Zhang, W., 10.1016/S0022-314X(03)00154-9, J. Number Theory 104 (2004), 156-161. (2004) Zbl1039.11052MR2021631DOI10.1016/S0022-314X(03)00154-9
- Zhang, W., Yi, Y., He, X., 10.1006/jnth.2000.2515, J. Number Theory 84 (2000), 199-213. (2000) Zbl0958.11061MR1795790DOI10.1006/jnth.2000.2515
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.