Estimation of exponential sums of polynomials of higher degrees II
Acta Arithmetica (2000)
- Volume: 93, Issue: 3, page 221-235
- ISSN: 0065-1036
Access Full Article
topHow to cite
topReferences
top- [1] R. Dąbrowski and B. Fisher, A stationary phase formula for exponential sums over and applications to GL(3)-Kloosterman sums, Acta Arith. 80 (1997), 1-48. Zbl0893.11032
- [2] P. Deligne, Applications de la formule des traces aux sommes trigonométriques, in: Cohomologie Etale (SGA 4 1/2), Lecture Notes in Math. 569, Springer, Berlin, 1977, 168-232.
- [3] N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, 1988. Zbl0675.14004
- [4] N. M. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, Princeton, 1990. Zbl0731.14008
- [5] J. H. Loxton and R. A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc. 26 (1982), 15-20. Zbl0474.10030
- [6] J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454. Zbl0575.10033
- [7] R. A. Smith, On n-dimensional Kloosterman sums, J. Number Theory 11 (1979), 324-343. Zbl0409.10024
- [8] R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997. Zbl0868.11046
- [9] Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Trans. Amer. Math. Soc. 350 (1998), 5003-5015. Zbl0922.11068
- [10] Y. Ye, Hyper-Kloosterman sums and estimation of exponential sums of polynomials of higher degrees, Acta Arith. 86 (1998), 255-267. Zbl0923.11117