Distributional versions of Littlewood's Tauberian theorem

Ricardo Estrada; Jasson Vindas

Czechoslovak Mathematical Journal (2013)

  • Volume: 63, Issue: 2, page 403-420
  • ISSN: 0011-4642

Abstract

top
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.

How to cite

top

Estrada, Ricardo, and Vindas, Jasson. "Distributional versions of Littlewood's Tauberian theorem." Czechoslovak Mathematical Journal 63.2 (2013): 403-420. <http://eudml.org/doc/260724>.

@article{Estrada2013,
abstract = {We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.},
author = {Estrada, Ricardo, Vindas, Jasson},
journal = {Czechoslovak Mathematical Journal},
keywords = {Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function; Tauberian theorem; Laplace transform; converse of Abel's theorem; Littlewood's Tauberian theorem; Abel summability; Cesàro summability; distributional Tauberian theorem; asymptotic behavior; generalized function},
language = {eng},
number = {2},
pages = {403-420},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distributional versions of Littlewood's Tauberian theorem},
url = {http://eudml.org/doc/260724},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Estrada, Ricardo
AU - Vindas, Jasson
TI - Distributional versions of Littlewood's Tauberian theorem
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 403
EP - 420
AB - We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.
LA - eng
KW - Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function; Tauberian theorem; Laplace transform; converse of Abel's theorem; Littlewood's Tauberian theorem; Abel summability; Cesàro summability; distributional Tauberian theorem; asymptotic behavior; generalized function
UR - http://eudml.org/doc/260724
ER -

References

top
  1. Çanak, I., Erdem, Y., Totur, Ü., 10.1016/j.mcm.2010.05.001, Math. Comput. Modelling 52 (2010), 738-743. (2010) Zbl1202.40007MR2661758DOI10.1016/j.mcm.2010.05.001
  2. Chandrasekharan, K., Minakshisundaram, S., Typical Means, (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). (1952) Zbl0047.29901MR0055458
  3. Drozzinov, J. N., Zav'jalov, B. I., 10.1070/SM1977v031n03ABEH002306, Math. USSR, Sb. 31 (1977), 329-345. (1977) Zbl0386.46035DOI10.1070/SM1977v031n03ABEH002306
  4. Estrada, R., 10.1098/rspa.1998.0265, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. (1998) Zbl0930.46035MR1653364DOI10.1098/rspa.1998.0265
  5. Estrada, R., Kanwal, R. P., 10.1006/jmaa.1993.1296, J. Math. Anal. Appl. 178 (1993), 130-142. (1993) Zbl0784.41023MR1231732DOI10.1006/jmaa.1993.1296
  6. Estrada, R., Kanwal, R. P., A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition, Birkhäuser, Boston (2002). (2002) Zbl1033.46031MR1882228
  7. Estrada, R., Vindas, J., 10.4171/ZAA/1420, Z. Anal. Anwend. 29 (2010), 487-504. (2010) Zbl1202.42015MR2735485DOI10.4171/ZAA/1420
  8. Estrada, R., Vindas, J., 10.2748/tmj/1356038977, Tohoku Math. J. 64 (2012), 539-560. (2012) MR3008237DOI10.2748/tmj/1356038977
  9. Hardy, G. H., Divergent Series, At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). (1949) Zbl0032.05801MR0030620
  10. Hardy, G. H., Littlewood, J. E., Contributions to the arithmetic theory of series, Proc. London Math. Soc. 11 (1913), 411-478. (1913) MR1577235
  11. Hardy, G. H., Littlewood, J. E., Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174-191. (1914) MR1577498
  12. Hardy, G. H., Littlewood, J. E., 10.1112/jlms/s1-6.4.281, J. Lond. Math. Soc. 6 (1931), 281-286. (1931) Zbl0003.11202MR1574634DOI10.1112/jlms/s1-6.4.281
  13. Ingham, A. E., The equivalence theorem for Cesàro and Riesz summability, Publ. Ramanujan Inst. 1 (1968), 107-113. (1968) MR0283455
  14. Korevaar, J., 10.1007/978-3-662-10225-1, Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). (2004) Zbl1056.40002MR2073637DOI10.1007/978-3-662-10225-1
  15. Littlewood, J. E., The converse of Abel's theorem on power series, Proc. London Math. Soc. 9 (1911), 434-448. (1911) MR1577317
  16. Pati, T., On Tauberian theorems, Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251. (2005) 
  17. Peetre, J., On the value of a distribution at a point, Port. Math. 27 (1968), 149-159. (1968) Zbl0205.42001MR0463913
  18. Pilipović, S., Stanković, B., 10.1112/jlms/s2-47.3.507, J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. (1993) Zbl0739.46032MR1214912DOI10.1112/jlms/s2-47.3.507
  19. Pilipović, S., Stanković, B., 10.1007/BF02697882, Acta Math. Hung. 74 (1997), 135-153. (1997) Zbl0921.46035MR1428053DOI10.1007/BF02697882
  20. Pilipović, S., Stanković, B., Vindas, J., Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5, World Scientific Hackensack, NJ (2012). (2012) MR2895276
  21. Schwartz, L., Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée, Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. (1966) Zbl0149.09501MR0209834
  22. Szász, O., 10.2307/1989647, Trans. Am. Math. Soc. 39 (1936), 117-130. (1936) Zbl0013.26202MR1501837DOI10.2307/1989647
  23. Tauber, A., 10.1007/BF01696278, Monatsh. Math. Phys. 8 (1897), 273-277 German. (1897) MR1546472DOI10.1007/BF01696278
  24. Vindas, J., 10.2298/PIM0898159V, Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. (2008) Zbl1199.46094MR2488547DOI10.2298/PIM0898159V
  25. Vindas, J., Estrada, R., 10.1007/s00013-008-2683-z, Arch. Math. 91 (2008), 247-253. (2008) Zbl1169.46019MR2439598DOI10.1007/s00013-008-2683-z
  26. Vindas, J., Pilipović, S., 10.1002/mana.200710090, Math. Nachr. 282 (2009), 1584-1599. (2009) Zbl1189.46032MR2573468DOI10.1002/mana.200710090
  27. Vladimirov, V. S., Methods of The Theory of Generalized Functions, Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). (2002) Zbl1078.46029MR2012831
  28. Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I., Tauberian Theorems for Generalized Functions, Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). (1988) MR0947960
  29. Wiener, N., 10.2307/1968102, Ann. Math. (2) 33 (1932), 1-100. (1932) Zbl0005.25003MR1503035DOI10.2307/1968102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.