Distributional versions of Littlewood's Tauberian theorem
Ricardo Estrada; Jasson Vindas
Czechoslovak Mathematical Journal (2013)
- Volume: 63, Issue: 2, page 403-420
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEstrada, Ricardo, and Vindas, Jasson. "Distributional versions of Littlewood's Tauberian theorem." Czechoslovak Mathematical Journal 63.2 (2013): 403-420. <http://eudml.org/doc/260724>.
@article{Estrada2013,
abstract = {We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.},
author = {Estrada, Ricardo, Vindas, Jasson},
journal = {Czechoslovak Mathematical Journal},
keywords = {Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function; Tauberian theorem; Laplace transform; converse of Abel's theorem; Littlewood's Tauberian theorem; Abel summability; Cesàro summability; distributional Tauberian theorem; asymptotic behavior; generalized function},
language = {eng},
number = {2},
pages = {403-420},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distributional versions of Littlewood's Tauberian theorem},
url = {http://eudml.org/doc/260724},
volume = {63},
year = {2013},
}
TY - JOUR
AU - Estrada, Ricardo
AU - Vindas, Jasson
TI - Distributional versions of Littlewood's Tauberian theorem
JO - Czechoslovak Mathematical Journal
PY - 2013
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 2
SP - 403
EP - 420
AB - We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.
LA - eng
KW - Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function; Tauberian theorem; Laplace transform; converse of Abel's theorem; Littlewood's Tauberian theorem; Abel summability; Cesàro summability; distributional Tauberian theorem; asymptotic behavior; generalized function
UR - http://eudml.org/doc/260724
ER -
References
top- Çanak, I., Erdem, Y., Totur, Ü., 10.1016/j.mcm.2010.05.001, Math. Comput. Modelling 52 (2010), 738-743. (2010) Zbl1202.40007MR2661758DOI10.1016/j.mcm.2010.05.001
- Chandrasekharan, K., Minakshisundaram, S., Typical Means, (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). (1952) Zbl0047.29901MR0055458
- Drozzinov, J. N., Zav'jalov, B. I., 10.1070/SM1977v031n03ABEH002306, Math. USSR, Sb. 31 (1977), 329-345. (1977) Zbl0386.46035DOI10.1070/SM1977v031n03ABEH002306
- Estrada, R., 10.1098/rspa.1998.0265, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. (1998) Zbl0930.46035MR1653364DOI10.1098/rspa.1998.0265
- Estrada, R., Kanwal, R. P., 10.1006/jmaa.1993.1296, J. Math. Anal. Appl. 178 (1993), 130-142. (1993) Zbl0784.41023MR1231732DOI10.1006/jmaa.1993.1296
- Estrada, R., Kanwal, R. P., A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition, Birkhäuser, Boston (2002). (2002) Zbl1033.46031MR1882228
- Estrada, R., Vindas, J., 10.4171/ZAA/1420, Z. Anal. Anwend. 29 (2010), 487-504. (2010) Zbl1202.42015MR2735485DOI10.4171/ZAA/1420
- Estrada, R., Vindas, J., 10.2748/tmj/1356038977, Tohoku Math. J. 64 (2012), 539-560. (2012) MR3008237DOI10.2748/tmj/1356038977
- Hardy, G. H., Divergent Series, At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). (1949) Zbl0032.05801MR0030620
- Hardy, G. H., Littlewood, J. E., Contributions to the arithmetic theory of series, Proc. London Math. Soc. 11 (1913), 411-478. (1913) MR1577235
- Hardy, G. H., Littlewood, J. E., Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. London Math. Soc. 13 (1914), 174-191. (1914) MR1577498
- Hardy, G. H., Littlewood, J. E., 10.1112/jlms/s1-6.4.281, J. Lond. Math. Soc. 6 (1931), 281-286. (1931) Zbl0003.11202MR1574634DOI10.1112/jlms/s1-6.4.281
- Ingham, A. E., The equivalence theorem for Cesàro and Riesz summability, Publ. Ramanujan Inst. 1 (1968), 107-113. (1968) MR0283455
- Korevaar, J., 10.1007/978-3-662-10225-1, Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). (2004) Zbl1056.40002MR2073637DOI10.1007/978-3-662-10225-1
- Littlewood, J. E., The converse of Abel's theorem on power series, Proc. London Math. Soc. 9 (1911), 434-448. (1911) MR1577317
- Pati, T., On Tauberian theorems, Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251. (2005)
- Peetre, J., On the value of a distribution at a point, Port. Math. 27 (1968), 149-159. (1968) Zbl0205.42001MR0463913
- Pilipović, S., Stanković, B., 10.1112/jlms/s2-47.3.507, J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. (1993) Zbl0739.46032MR1214912DOI10.1112/jlms/s2-47.3.507
- Pilipović, S., Stanković, B., 10.1007/BF02697882, Acta Math. Hung. 74 (1997), 135-153. (1997) Zbl0921.46035MR1428053DOI10.1007/BF02697882
- Pilipović, S., Stanković, B., Vindas, J., Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5, World Scientific Hackensack, NJ (2012). (2012) MR2895276
- Schwartz, L., Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée, Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. (1966) Zbl0149.09501MR0209834
- Szász, O., 10.2307/1989647, Trans. Am. Math. Soc. 39 (1936), 117-130. (1936) Zbl0013.26202MR1501837DOI10.2307/1989647
- Tauber, A., 10.1007/BF01696278, Monatsh. Math. Phys. 8 (1897), 273-277 German. (1897) MR1546472DOI10.1007/BF01696278
- Vindas, J., 10.2298/PIM0898159V, Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. (2008) Zbl1199.46094MR2488547DOI10.2298/PIM0898159V
- Vindas, J., Estrada, R., 10.1007/s00013-008-2683-z, Arch. Math. 91 (2008), 247-253. (2008) Zbl1169.46019MR2439598DOI10.1007/s00013-008-2683-z
- Vindas, J., Pilipović, S., 10.1002/mana.200710090, Math. Nachr. 282 (2009), 1584-1599. (2009) Zbl1189.46032MR2573468DOI10.1002/mana.200710090
- Vladimirov, V. S., Methods of The Theory of Generalized Functions, Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). (2002) Zbl1078.46029MR2012831
- Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I., Tauberian Theorems for Generalized Functions, Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). (1988) MR0947960
- Wiener, N., 10.2307/1968102, Ann. Math. (2) 33 (1932), 1-100. (1932) Zbl0005.25003MR1503035DOI10.2307/1968102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.