Strong pseudocompact properties
Salvador García-Ferreira; Y. F. Ortiz-Castillo
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 101-109
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGarcía-Ferreira, Salvador, and Ortiz-Castillo, Y. F.. "Strong pseudocompact properties." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 101-109. <http://eudml.org/doc/260763>.
@article{García2014,
abstract = {For a free ultrafilter $p$ on $\mathbb \{N\}$,
the concepts of strong pseudocompactness,
strong $p$-pseudocompactness and
pseudo-$\omega $-boundedness were
introduced in [Angoa J., Ortiz-Castillo Y.F.,
Tamariz-Mascarúa A., Ultrafilters and
properties related to compactness,
Topology Proc. 43 (2014), 183–200]
and [García-Ferreira S., Ortiz-Castillo Y.F.,
Strong pseudocompact properties of
certain subspaces of $\mathbb \{N\}^*$,
submitted]. These properties in a space
$X$ characterize the pseudocompactness
of the hyperspace $\mathcal \{K\}(X)$ of
compact subsets of $X$ with the Vietoris
topology. In this paper, we study the
strong pseudocompactness and strong
$p$-pseudocompactness of certain spaces.
Besides, we established a relationship
between these kind of properties and
a result involving topological groups
of I. Protasov [Discrete subsets of
topological groups, Math. Notes 55
(1994), no. 1–2, 101–102].},
author = {García-Ferreira, Salvador, Ortiz-Castillo, Y. F.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak \{c\}-OK$ points; Rudin-Keisler pre-order; -pseudocompact space; ultrapseudocompact space; strongly pseudocompact space; strongly -pseudocompact space; weak -point; Rudin-Keisler pre-order},
language = {eng},
number = {1},
pages = {101-109},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strong pseudocompact properties},
url = {http://eudml.org/doc/260763},
volume = {55},
year = {2014},
}
TY - JOUR
AU - García-Ferreira, Salvador
AU - Ortiz-Castillo, Y. F.
TI - Strong pseudocompact properties
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 101
EP - 109
AB - For a free ultrafilter $p$ on $\mathbb {N}$,
the concepts of strong pseudocompactness,
strong $p$-pseudocompactness and
pseudo-$\omega $-boundedness were
introduced in [Angoa J., Ortiz-Castillo Y.F.,
Tamariz-Mascarúa A., Ultrafilters and
properties related to compactness,
Topology Proc. 43 (2014), 183–200]
and [García-Ferreira S., Ortiz-Castillo Y.F.,
Strong pseudocompact properties of
certain subspaces of $\mathbb {N}^*$,
submitted]. These properties in a space
$X$ characterize the pseudocompactness
of the hyperspace $\mathcal {K}(X)$ of
compact subsets of $X$ with the Vietoris
topology. In this paper, we study the
strong pseudocompactness and strong
$p$-pseudocompactness of certain spaces.
Besides, we established a relationship
between these kind of properties and
a result involving topological groups
of I. Protasov [Discrete subsets of
topological groups, Math. Notes 55
(1994), no. 1–2, 101–102].
LA - eng
KW - $p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak {c}-OK$ points; Rudin-Keisler pre-order; -pseudocompact space; ultrapseudocompact space; strongly pseudocompact space; strongly -pseudocompact space; weak -point; Rudin-Keisler pre-order
UR - http://eudml.org/doc/260763
ER -
References
top- Akin E., Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions, The University Series in Mathematics, Plenum Press, New York, 1997. Zbl0919.54033MR1467479
- Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarua A., Compact like properties on hyperspaces, Mat. Vesnik 65 no. 3 (2013), 306–318. MR3057283
- Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183–200. MR3096293
- Bernstein A., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193. Zbl0198.55401MR0251697
- Comfort W.W., 10.1090/S0002-9904-1977-14316-4, Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. Zbl0355.54005MR0454893DOI10.1090/S0002-9904-1977-14316-4
- Comfort W.W., Negrepontis S., The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, 211, Springer, New York-Heidelberg, 1974. Zbl0298.02004MR0396267
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Furstenberg H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, 1981. Zbl0459.28023MR0603625
- García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of , submitted.
- García-Ferreira S., Sanchiz M., On -compact subsets, Houston J. Math. 23 (1997), 65–86. MR1688689
- Ginsburg J., Saks V., 10.2140/pjm.1975.57.403, Pacific J. Math. 57 (1975), 403–418. Zbl0288.54020MR0380736DOI10.2140/pjm.1975.57.403
- Protasov I.V., 10.1007/BF02110773, Math. Notes 55 (1994), no. 1–2, 101–102. Zbl0833.22005MR1275313DOI10.1007/BF02110773
- Shelah S., 10.1007/BFb0096536, Lecture Notes in Mathematics, 940, Springer, Berlin-New York, 1982. Zbl0819.03042MR0675955DOI10.1007/BFb0096536
- Simon P., Applications of independent linked families, Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam-New York, 1985, pp. 561–580. Zbl0615.54004MR0863940
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.