Strong pseudocompact properties

Salvador García-Ferreira; Y. F. Ortiz-Castillo

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 1, page 101-109
  • ISSN: 0010-2628

Abstract

top
For a free ultrafilter p on , the concepts of strong pseudocompactness, strong p -pseudocompactness and pseudo- ω -boundedness were introduced in [Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183–200] and [García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of * , submitted]. These properties in a space X characterize the pseudocompactness of the hyperspace 𝒦 ( X ) of compact subsets of X with the Vietoris topology. In this paper, we study the strong pseudocompactness and strong p -pseudocompactness of certain spaces. Besides, we established a relationship between these kind of properties and a result involving topological groups of I. Protasov [Discrete subsets of topological groups, Math. Notes 55 (1994), no. 1–2, 101–102].

How to cite

top

García-Ferreira, Salvador, and Ortiz-Castillo, Y. F.. "Strong pseudocompact properties." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 101-109. <http://eudml.org/doc/260763>.

@article{García2014,
abstract = {For a free ultrafilter $p$ on $\mathbb \{N\}$, the concepts of strong pseudocompactness, strong $p$-pseudocompactness and pseudo-$\omega $-boundedness were introduced in [Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183–200] and [García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of $\mathbb \{N\}^*$, submitted]. These properties in a space $X$ characterize the pseudocompactness of the hyperspace $\mathcal \{K\}(X)$ of compact subsets of $X$ with the Vietoris topology. In this paper, we study the strong pseudocompactness and strong $p$-pseudocompactness of certain spaces. Besides, we established a relationship between these kind of properties and a result involving topological groups of I. Protasov [Discrete subsets of topological groups, Math. Notes 55 (1994), no. 1–2, 101–102].},
author = {García-Ferreira, Salvador, Ortiz-Castillo, Y. F.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak \{c\}-OK$ points; Rudin-Keisler pre-order; -pseudocompact space; ultrapseudocompact space; strongly pseudocompact space; strongly -pseudocompact space; weak -point; Rudin-Keisler pre-order},
language = {eng},
number = {1},
pages = {101-109},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Strong pseudocompact properties},
url = {http://eudml.org/doc/260763},
volume = {55},
year = {2014},
}

TY - JOUR
AU - García-Ferreira, Salvador
AU - Ortiz-Castillo, Y. F.
TI - Strong pseudocompact properties
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 101
EP - 109
AB - For a free ultrafilter $p$ on $\mathbb {N}$, the concepts of strong pseudocompactness, strong $p$-pseudocompactness and pseudo-$\omega $-boundedness were introduced in [Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183–200] and [García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of $\mathbb {N}^*$, submitted]. These properties in a space $X$ characterize the pseudocompactness of the hyperspace $\mathcal {K}(X)$ of compact subsets of $X$ with the Vietoris topology. In this paper, we study the strong pseudocompactness and strong $p$-pseudocompactness of certain spaces. Besides, we established a relationship between these kind of properties and a result involving topological groups of I. Protasov [Discrete subsets of topological groups, Math. Notes 55 (1994), no. 1–2, 101–102].
LA - eng
KW - $p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak {c}-OK$ points; Rudin-Keisler pre-order; -pseudocompact space; ultrapseudocompact space; strongly pseudocompact space; strongly -pseudocompact space; weak -point; Rudin-Keisler pre-order
UR - http://eudml.org/doc/260763
ER -

References

top
  1. Akin E., Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions, The University Series in Mathematics, Plenum Press, New York, 1997. Zbl0919.54033MR1467479
  2. Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarua A., Compact like properties on hyperspaces, Mat. Vesnik 65 no. 3 (2013), 306–318. MR3057283
  3. Angoa J., Ortiz-Castillo Y.F., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Topology Proc. 43 (2014), 183–200. MR3096293
  4. Bernstein A., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193. Zbl0198.55401MR0251697
  5. Comfort W.W., 10.1090/S0002-9904-1977-14316-4, Bull. Amer. Math. Soc. 83 (1977), no. 4, 417–455. Zbl0355.54005MR0454893DOI10.1090/S0002-9904-1977-14316-4
  6. Comfort W.W., Negrepontis S., The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, 211, Springer, New York-Heidelberg, 1974. Zbl0298.02004MR0396267
  7. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  8. Furstenberg H., Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, 1981. Zbl0459.28023MR0603625
  9. García-Ferreira S., Ortiz-Castillo Y.F., Strong pseudocompact properties of certain subspaces of * , submitted. 
  10. García-Ferreira S., Sanchiz M., On C -compact subsets, Houston J. Math. 23 (1997), 65–86. MR1688689
  11. Ginsburg J., Saks V., 10.2140/pjm.1975.57.403, Pacific J. Math. 57 (1975), 403–418. Zbl0288.54020MR0380736DOI10.2140/pjm.1975.57.403
  12. Protasov I.V., 10.1007/BF02110773, Math. Notes 55 (1994), no. 1–2, 101–102. Zbl0833.22005MR1275313DOI10.1007/BF02110773
  13. Shelah S., 10.1007/BFb0096536, Lecture Notes in Mathematics, 940, Springer, Berlin-New York, 1982. Zbl0819.03042MR0675955DOI10.1007/BFb0096536
  14. Simon P., Applications of independent linked families, Topology, Theory and Applications (Eger, 1983), Colloq. Math. Soc. János Bolyai 41, North-Holland, Amsterdam-New York, 1985, pp. 561–580. Zbl0615.54004MR0863940

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.