The subspace of weak -points of
Salvador García-Ferreira; Y. F. Ortiz-Castillo
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 2, page 231-236
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGarcía-Ferreira, Salvador, and Ortiz-Castillo, Y. F.. "The subspace of weak $P$-points of $\mathbb {N}^*$." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 231-236. <http://eudml.org/doc/270091>.
@article{García2015,
abstract = {Let $W$ be the subspace of $\mathbb \{N\}^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb \{N\}^*$.},
author = {García-Ferreira, Salvador, Ortiz-Castillo, Y. F.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak \{c\}$-OK points; weak -point; $\mathfrak \{c\}$-OK point; pseudocompactness; ultrapseudocompactness},
language = {eng},
number = {2},
pages = {231-236},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The subspace of weak $P$-points of $\mathbb \{N\}^*$},
url = {http://eudml.org/doc/270091},
volume = {56},
year = {2015},
}
TY - JOUR
AU - García-Ferreira, Salvador
AU - Ortiz-Castillo, Y. F.
TI - The subspace of weak $P$-points of $\mathbb {N}^*$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 231
EP - 236
AB - Let $W$ be the subspace of $\mathbb {N}^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb {N}^*$.
LA - eng
KW - $p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak {c}$-OK points; weak -point; $\mathfrak {c}$-OK point; pseudocompactness; ultrapseudocompactness
UR - http://eudml.org/doc/270091
ER -
References
top- Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa Á., Compact-like properties in hyperspaces, Mat. Vesnik 65 (2013), 306–318. MR3057283
- Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Top. Proc. 43 (2014), 183–200. MR3096293
- Bernstein A., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193. Zbl0198.55401MR0251697
- Boldjiev B., Malykhin V. I., The sequentiality is equivalent to the Fréchet-Urysohn property, Comment. Math. Univ. Carolin. 31 (1990), 23–25. MR1056166
- Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- García-Ferreira S., Ortiz-Castillo Y. F., Strong pseudocompact properties, Comment. Math. Univ. Carolinae 55 (2014), 101–109. MR3160828
- García-Ferreira S., Malykhin V. I., 10.1090/S0002-9939-96-03322-9, Proc. Amer. Math. Soc. 124 (1996), 2267–2273. Zbl0849.54004MR1327014DOI10.1090/S0002-9939-96-03322-9
- García-Ferreira S., Sanchis M., On -compact subsets, Houston J. Math. 23, 1997, 65–86. Zbl0881.54019MR1688689
- García-Ferreira S., Tomita A. H., A pseudocompact groups which is not strongly pseudocompact, submitted.
- Ginsburg J., Saks V., 10.2140/pjm.1975.57.403, Pacific J. Math. 57 (1975), 403–418. Zbl0288.54020MR0380736DOI10.2140/pjm.1975.57.403
- Kunen K., Weak -points in , Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR0588822
- Sanchis M., Tamariz-Mascarúa Á., 10.1016/S0166-8641(98)00111-4, Topology Appl. 98 (1999), 323–343. Zbl0970.54008MR1720010DOI10.1016/S0166-8641(98)00111-4
- D. B. Shakhmatov, 10.1016/0166-8641(86)90004-0, Topology Appl. 22 (1986), 139–144. MR0836321DOI10.1016/0166-8641(86)90004-0
- van Mill J., An introduction to , Handbook of Set-theoretic Top., Chap. 11, Elsevier Science Publishers B.V., (1984) p. 503–567. Zbl0555.54004MR0776630
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.