The subspace of weak P -points of *

Salvador García-Ferreira; Y. F. Ortiz-Castillo

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 2, page 231-236
  • ISSN: 0010-2628

Abstract

top
Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

How to cite

top

García-Ferreira, Salvador, and Ortiz-Castillo, Y. F.. "The subspace of weak $P$-points of $\mathbb {N}^*$." Commentationes Mathematicae Universitatis Carolinae 56.2 (2015): 231-236. <http://eudml.org/doc/270091>.

@article{García2015,
abstract = {Let $W$ be the subspace of $\mathbb \{N\}^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb \{N\}^*$.},
author = {García-Ferreira, Salvador, Ortiz-Castillo, Y. F.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak \{c\}$-OK points; weak -point; $\mathfrak \{c\}$-OK point; pseudocompactness; ultrapseudocompactness},
language = {eng},
number = {2},
pages = {231-236},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The subspace of weak $P$-points of $\mathbb \{N\}^*$},
url = {http://eudml.org/doc/270091},
volume = {56},
year = {2015},
}

TY - JOUR
AU - García-Ferreira, Salvador
AU - Ortiz-Castillo, Y. F.
TI - The subspace of weak $P$-points of $\mathbb {N}^*$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 2
SP - 231
EP - 236
AB - Let $W$ be the subspace of $\mathbb {N}^*$ consisting of all weak $P$-points. It is not hard to see that $W$ is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that $W$ is a $p$-pseudocompact space for all $p \in \mathbb {N}^*$.
LA - eng
KW - $p$-pseudocompactness; ultrapseudocompactness; strongly pseudocompactness; strongly $p$-pseudocompactness; weak $P$-points; $\mathfrak {c}$-OK points; weak -point; $\mathfrak {c}$-OK point; pseudocompactness; ultrapseudocompactness
UR - http://eudml.org/doc/270091
ER -

References

top
  1. Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa Á., Compact-like properties in hyperspaces, Mat. Vesnik 65 (2013), 306–318. MR3057283
  2. Angoa J., Ortiz-Castillo Y., Tamariz-Mascarúa A., Ultrafilters and properties related to compactness, Top. Proc. 43 (2014), 183–200. MR3096293
  3. Bernstein A., A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185–193. Zbl0198.55401MR0251697
  4. Boldjiev B., Malykhin V. I., The sequentiality is equivalent to the Fréchet-Urysohn property, Comment. Math. Univ. Carolin. 31 (1990), 23–25. MR1056166
  5. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  6. García-Ferreira S., Ortiz-Castillo Y. F., Strong pseudocompact properties, Comment. Math. Univ. Carolinae 55 (2014), 101–109. MR3160828
  7. García-Ferreira S., Malykhin V. I., 10.1090/S0002-9939-96-03322-9, Proc. Amer. Math. Soc. 124 (1996), 2267–2273. Zbl0849.54004MR1327014DOI10.1090/S0002-9939-96-03322-9
  8. García-Ferreira S., Sanchis M., On C -compact subsets, Houston J. Math. 23, 1997, 65–86. Zbl0881.54019MR1688689
  9. García-Ferreira S., Tomita A. H., A pseudocompact groups which is not strongly pseudocompact, submitted. 
  10. Ginsburg J., Saks V., 10.2140/pjm.1975.57.403, Pacific J. Math. 57 (1975), 403–418. Zbl0288.54020MR0380736DOI10.2140/pjm.1975.57.403
  11. Kunen K., Weak P -points in * , Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. MR0588822
  12. Sanchis M., Tamariz-Mascarúa Á., 10.1016/S0166-8641(98)00111-4, Topology Appl. 98 (1999), 323–343. Zbl0970.54008MR1720010DOI10.1016/S0166-8641(98)00111-4
  13. D. B. Shakhmatov, 10.1016/0166-8641(86)90004-0, Topology Appl. 22 (1986), 139–144. MR0836321DOI10.1016/0166-8641(86)90004-0
  14. van Mill J., An introduction to β ω , Handbook of Set-theoretic Top., Chap. 11, Elsevier Science Publishers B.V., (1984) p. 503–567. Zbl0555.54004MR0776630

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.