Paratopological (topological) groups with certain networks
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 1, page 111-119
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLiu, Chuan. "Paratopological (topological) groups with certain networks." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 111-119. <http://eudml.org/doc/260774>.
@article{Liu2014,
abstract = {In this paper, we discuss certain
networks on paratopological (or
topological) groups and give positive
or negative answers to the questions
in [Lin2013]. We also prove that a
non-locally compact, $k$-gentle
paratopological group is metrizable if
its remainder (in the Hausdorff
compactification) is
a Fréchet-Urysohn space with a
point-countable cs*-network, which
improves some theorems in
[Liu C., Metrizability of paratopological
$($semitopological$)$ groups,
Topology Appl. 159 (2012), 1415–1420],
[Liu C., Lin S., Generalized metric
spaces with algebraic structures,
Topology Appl. 157 (2010), 1966–1974].},
author = {Liu, Chuan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders; paratopological group; topological group; sequential neighborhood; network; metrizable; compactification; remainder},
language = {eng},
number = {1},
pages = {111-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Paratopological (topological) groups with certain networks},
url = {http://eudml.org/doc/260774},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Liu, Chuan
TI - Paratopological (topological) groups with certain networks
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 111
EP - 119
AB - In this paper, we discuss certain
networks on paratopological (or
topological) groups and give positive
or negative answers to the questions
in [Lin2013]. We also prove that a
non-locally compact, $k$-gentle
paratopological group is metrizable if
its remainder (in the Hausdorff
compactification) is
a Fréchet-Urysohn space with a
point-countable cs*-network, which
improves some theorems in
[Liu C., Metrizability of paratopological
$($semitopological$)$ groups,
Topology Appl. 159 (2012), 1415–1420],
[Liu C., Lin S., Generalized metric
spaces with algebraic structures,
Topology Appl. 157 (2010), 1966–1974].
LA - eng
KW - paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders; paratopological group; topological group; sequential neighborhood; network; metrizable; compactification; remainder
UR - http://eudml.org/doc/260774
ER -
References
top- Arhangel'skiĭ A.V., 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115–162. MR0227950DOI10.1070/RM1966v021n04ABEH004169
- Arhangel'skii A.V., 10.1016/j.topol.2006.10.008, Topology Appl. 154 (2007), 1084–1088. Zbl1144.54001MR2298623DOI10.1016/j.topol.2006.10.008
- Arhangel'skii A.V., 10.1016/j.topol.2010.10.013, Topology Appl. 158 (2011), 215–222. MR2739892DOI10.1016/j.topol.2010.10.013
- Arhangel'skii A.V., Choban M.M., 10.1016/j.topol.2009.08.028, Topology Appl. 157 (2010), 789–799. MR2585412DOI10.1016/j.topol.2009.08.028
- Arhangel'skiĭ A.V., Okunev O.G., Pestov V.G., 10.1016/0166-8641(89)90088-6, Topology Appl. 33 (1989), 63–76. MR1020983DOI10.1016/0166-8641(89)90088-6
- Arhangel'skii A.V., Tkachenko M., Topological Groups and Related Structures, Atlantis Press and World Sci., Hackensack, NJ, 2008. MR2433295
- Engelking R., General Topology, PWN, Polish Scientific Pub., Warszawa, 1977. Zbl0684.54001MR0500780
- Franklin S., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. Zbl0168.43502MR0180954
- Gruenhage G., k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478–482. Zbl0453.54012MR0581009
- Gruenhage G., Generalized metric spaces, K. Kunen, J.E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423–501. Zbl0794.54034MR0776629
- Gruenhage G., Michael E., Tanaka Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113 (1984), no. 2, 303–332. Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
- Lin S., On sequence-covering s-maps, Math. Adv. (China) 25 (1996), 548–551. MR1453163
- Lin F., A note on paratopological groups with countable networks of sequential neighborhoods, Topology Proc. 41 (2013), 9–16. MR2903277
- Liu C., A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 633–640. Zbl1150.54036MR2337418
- Liu C., 10.1016/j.topol.2012.01.002, Topology Appl. 159 (2012), 1415–1420. Zbl1235.54015MR2879371DOI10.1016/j.topol.2012.01.002
- Liu C., Lin S., 10.1016/j.topol.2010.04.010, Topology Appl. 157 (2010), 1966–1974. Zbl1194.54038MR2646429DOI10.1016/j.topol.2010.04.010
- Michael E., 10.1016/0016-660X(72)90040-2, General Topology Appl. 2 (1972), 91–138. Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
- Ordman E., Smith-Thomas B., 10.1090/S0002-9939-1980-0565363-2, Proc. Amer. Math. Soc. 79 (1980), no. 2, 319–326. Zbl0446.22001MR0565363DOI10.1090/S0002-9939-1980-0565363-2
- Simon P., Divergent sequences in compact Hausdorff spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 1087–1094, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl0439.54022MR0588856
- Shiraki T., M-spaces, their generalization and metrization theorems, Sci. Rep. Tokyo Kyoiku Daigaku A, 11 (1971), 57–67. Zbl0233.54016MR0305365
- Tanaka Y., Point-countable covers and k-networks, Topology Proc. 12 (1987), 327–349. Zbl0676.54035MR0991759
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.