Paratopological (topological) groups with certain networks

Chuan Liu

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 1, page 111-119
  • ISSN: 0010-2628

Abstract

top
In this paper, we discuss certain networks on paratopological (or topological) groups and give positive or negative answers to the questions in [Lin2013]. We also prove that a non-locally compact, k -gentle paratopological group is metrizable if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn space with a point-countable cs*-network, which improves some theorems in [Liu C., Metrizability of paratopological ( semitopological ) groups, Topology Appl. 159 (2012), 1415–1420], [Liu C., Lin S., Generalized metric spaces with algebraic structures, Topology Appl. 157 (2010), 1966–1974].

How to cite

top

Liu, Chuan. "Paratopological (topological) groups with certain networks." Commentationes Mathematicae Universitatis Carolinae 55.1 (2014): 111-119. <http://eudml.org/doc/260774>.

@article{Liu2014,
abstract = {In this paper, we discuss certain networks on paratopological (or topological) groups and give positive or negative answers to the questions in [Lin2013]. We also prove that a non-locally compact, $k$-gentle paratopological group is metrizable if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn space with a point-countable cs*-network, which improves some theorems in [Liu C., Metrizability of paratopological $($semitopological$)$ groups, Topology Appl. 159 (2012), 1415–1420], [Liu C., Lin S., Generalized metric spaces with algebraic structures, Topology Appl. 157 (2010), 1966–1974].},
author = {Liu, Chuan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders; paratopological group; topological group; sequential neighborhood; network; metrizable; compactification; remainder},
language = {eng},
number = {1},
pages = {111-119},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Paratopological (topological) groups with certain networks},
url = {http://eudml.org/doc/260774},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Liu, Chuan
TI - Paratopological (topological) groups with certain networks
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 1
SP - 111
EP - 119
AB - In this paper, we discuss certain networks on paratopological (or topological) groups and give positive or negative answers to the questions in [Lin2013]. We also prove that a non-locally compact, $k$-gentle paratopological group is metrizable if its remainder (in the Hausdorff compactification) is a Fréchet-Urysohn space with a point-countable cs*-network, which improves some theorems in [Liu C., Metrizability of paratopological $($semitopological$)$ groups, Topology Appl. 159 (2012), 1415–1420], [Liu C., Lin S., Generalized metric spaces with algebraic structures, Topology Appl. 157 (2010), 1966–1974].
LA - eng
KW - paratopological groups; topological groups; sequential neighborhood; networks; metrizable; compactifications; remainders; paratopological group; topological group; sequential neighborhood; network; metrizable; compactification; remainder
UR - http://eudml.org/doc/260774
ER -

References

top
  1. Arhangel'skiĭ A.V., 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115–162. MR0227950DOI10.1070/RM1966v021n04ABEH004169
  2. Arhangel'skii A.V., 10.1016/j.topol.2006.10.008, Topology Appl. 154 (2007), 1084–1088. Zbl1144.54001MR2298623DOI10.1016/j.topol.2006.10.008
  3. Arhangel'skii A.V., 10.1016/j.topol.2010.10.013, Topology Appl. 158 (2011), 215–222. MR2739892DOI10.1016/j.topol.2010.10.013
  4. Arhangel'skii A.V., Choban M.M., 10.1016/j.topol.2009.08.028, Topology Appl. 157 (2010), 789–799. MR2585412DOI10.1016/j.topol.2009.08.028
  5. Arhangel'skiĭ A.V., Okunev O.G., Pestov V.G., 10.1016/0166-8641(89)90088-6, Topology Appl. 33 (1989), 63–76. MR1020983DOI10.1016/0166-8641(89)90088-6
  6. Arhangel'skii A.V., Tkachenko M., Topological Groups and Related Structures, Atlantis Press and World Sci., Hackensack, NJ, 2008. MR2433295
  7. Engelking R., General Topology, PWN, Polish Scientific Pub., Warszawa, 1977. Zbl0684.54001MR0500780
  8. Franklin S., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. Zbl0168.43502MR0180954
  9. Gruenhage G., k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478–482. Zbl0453.54012MR0581009
  10. Gruenhage G., Generalized metric spaces, K. Kunen, J.E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423–501. Zbl0794.54034MR0776629
  11. Gruenhage G., Michael E., Tanaka Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113 (1984), no. 2, 303–332. Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
  12. Lin S., On sequence-covering s-maps, Math. Adv. (China) 25 (1996), 548–551. MR1453163
  13. Lin F., A note on paratopological groups with countable networks of sequential neighborhoods, Topology Proc. 41 (2013), 9–16. MR2903277
  14. Liu C., A note on paratopological groups, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 633–640. Zbl1150.54036MR2337418
  15. Liu C., 10.1016/j.topol.2012.01.002, Topology Appl. 159 (2012), 1415–1420. Zbl1235.54015MR2879371DOI10.1016/j.topol.2012.01.002
  16. Liu C., Lin S., 10.1016/j.topol.2010.04.010, Topology Appl. 157 (2010), 1966–1974. Zbl1194.54038MR2646429DOI10.1016/j.topol.2010.04.010
  17. Michael E., 10.1016/0016-660X(72)90040-2, General Topology Appl. 2 (1972), 91–138. Zbl0238.54009MR0309045DOI10.1016/0016-660X(72)90040-2
  18. Ordman E., Smith-Thomas B., 10.1090/S0002-9939-1980-0565363-2, Proc. Amer. Math. Soc. 79 (1980), no. 2, 319–326. Zbl0446.22001MR0565363DOI10.1090/S0002-9939-1980-0565363-2
  19. Simon P., Divergent sequences in compact Hausdorff spaces, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 1087–1094, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam-New York, 1980. Zbl0439.54022MR0588856
  20. Shiraki T., M-spaces, their generalization and metrization theorems, Sci. Rep. Tokyo Kyoiku Daigaku A, 11 (1971), 57–67. Zbl0233.54016MR0305365
  21. Tanaka Y., Point-countable covers and k-networks, Topology Proc. 12 (1987), 327–349. Zbl0676.54035MR0991759

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.