A note on paratopological groups

Chuan Liu

Commentationes Mathematicae Universitatis Carolinae (2006)

  • Volume: 47, Issue: 4, page 633-640
  • ISSN: 0010-2628

Abstract

top
In this paper, it is proved that a first-countable paratopological group has a regular G δ -diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular G δ -diagonal, Topology Appl. 153 (2006), 1917–1929]. If G is a symmetrizable paratopological group, then G is a developable space. We also discuss copies of S ω and of S 2 in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.

How to cite

top

Liu, Chuan. "A note on paratopological groups." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 633-640. <http://eudml.org/doc/249864>.

@article{Liu2006,
abstract = {In this paper, it is proved that a first-countable paratopological group has a regular $G_\{\delta \}$-diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular $G_\{\delta \}$-diagonal, Topology Appl. 153 (2006), 1917–1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega $ and of $S_2$ in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.},
author = {Liu, Chuan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {paratopological group; symmetrizable spaces; regular $G_\{\delta \}$-diagonal; weak bases; Arens space; paratopological group; symmetrizable spaces; regular -diagonal; weak bases; Arens space},
language = {eng},
number = {4},
pages = {633-640},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on paratopological groups},
url = {http://eudml.org/doc/249864},
volume = {47},
year = {2006},
}

TY - JOUR
AU - Liu, Chuan
TI - A note on paratopological groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 633
EP - 640
AB - In this paper, it is proved that a first-countable paratopological group has a regular $G_{\delta }$-diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular $G_{\delta }$-diagonal, Topology Appl. 153 (2006), 1917–1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega $ and of $S_2$ in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.
LA - eng
KW - paratopological group; symmetrizable spaces; regular $G_{\delta }$-diagonal; weak bases; Arens space; paratopological group; symmetrizable spaces; regular -diagonal; weak bases; Arens space
UR - http://eudml.org/doc/249864
ER -

References

top
  1. Arhangel'skiĭ A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162. (1966) MR0227950
  2. Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163-200. (1981) 
  3. Arhangel'skii A.V., Burke D., Spaces with a regular G δ -diagonal, Topology Appl. 153 (2006), 1917-1929. (2006) Zbl1117.54004MR2227036
  4. Arhangel'skii A.V., Reznichenko E.A., Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119. (2005) Zbl1077.54023MR2139745
  5. Burke D., Engelking R., Lutzer D., Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc. 51 (1975), 483-488. (1975) Zbl0307.54030MR0370519
  6. Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
  7. Foged L., A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985), 487-490. (1985) Zbl0592.54027MR0806093
  8. Gruenhage G., Generalized metric spaces, in: K. Kunen, J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, 1984, pp.423-501. Zbl0794.54034MR0776629
  9. Gruenhage G., Michael E., Tanaka Y., Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332. (1984) Zbl0561.54016MR0749538
  10. Liu C., On weakly bisequential spaces, Comment Math. Univ. Carolin. 41 3 (2000), 611-617. (2000) Zbl1038.54004MR1795090
  11. Liu C., Notes on g-metrizable spaces, Topology Proc. 29 1 (2005), 207-215. (2005) Zbl1085.54019MR2182930
  12. Liu C., Nagata-Smirnov revisited: spaces with σ -wHCP bases, Topology Proc. 29 2 (2005), 559-565. (2005) Zbl1123.54009MR2244489
  13. Michael E., A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045
  14. Nogura T., Shakhmatov D., Tanaka Y., α 4 -property versus A -property in topological spaces and groups, Studia Sci. Math. Hungar. 33 (1997), 351-362. (1997) Zbl0902.22001MR1601628
  15. Nyikos P., Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 4 (1981), 793-801. (1981) Zbl0474.22001MR0630057
  16. O'Meara P., On paracompactness in function spaces with the compact open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189. (1971) Zbl0214.21105MR0276919
  17. Sirois-Dumais R., Quasi- and weakly-quasi-first-countable space, Topology Appl. 11 (1980), 223-230. (1980) MR0572376
  18. Svetlichnyi S.A., Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser I Mat. Mekh. 4 (1989), 79-81. (1989) MR1029763
  19. Reznichenko E.A., Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233-244. (1994) MR1299719
  20. Tanaka Y., Metrizability of certain quotient spaces, Fund. Math. 119 (1983), 157-168. (1983) MR0731817
  21. Zenor P., On spaces with regular G δ -diagonals, Pacific J. Math. 40 (1972), 759-763. (1972) MR0307195

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.