A note on paratopological groups
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 4, page 633-640
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLiu, Chuan. "A note on paratopological groups." Commentationes Mathematicae Universitatis Carolinae 47.4 (2006): 633-640. <http://eudml.org/doc/249864>.
@article{Liu2006,
abstract = {In this paper, it is proved that a first-countable paratopological group has a regular $G_\{\delta \}$-diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular $G_\{\delta \}$-diagonal, Topology Appl. 153 (2006), 1917–1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega $ and of $S_2$ in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.},
author = {Liu, Chuan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {paratopological group; symmetrizable spaces; regular $G_\{\delta \}$-diagonal; weak bases; Arens space; paratopological group; symmetrizable spaces; regular -diagonal; weak bases; Arens space},
language = {eng},
number = {4},
pages = {633-640},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on paratopological groups},
url = {http://eudml.org/doc/249864},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Liu, Chuan
TI - A note on paratopological groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 4
SP - 633
EP - 640
AB - In this paper, it is proved that a first-countable paratopological group has a regular $G_{\delta }$-diagonal, which gives an affirmative answer to Arhangel’skii and Burke’s question [Spaces with a regular $G_{\delta }$-diagonal, Topology Appl. 153 (2006), 1917–1929]. If $G$ is a symmetrizable paratopological group, then $G$ is a developable space. We also discuss copies of $S_\omega $ and of $S_2$ in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793–801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79–81] results.
LA - eng
KW - paratopological group; symmetrizable spaces; regular $G_{\delta }$-diagonal; weak bases; Arens space; paratopological group; symmetrizable spaces; regular -diagonal; weak bases; Arens space
UR - http://eudml.org/doc/249864
ER -
References
top- Arhangel'skiĭ A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162. (1966) MR0227950
- Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163-200. (1981)
- Arhangel'skii A.V., Burke D., Spaces with a regular -diagonal, Topology Appl. 153 (2006), 1917-1929. (2006) Zbl1117.54004MR2227036
- Arhangel'skii A.V., Reznichenko E.A., Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119. (2005) Zbl1077.54023MR2139745
- Burke D., Engelking R., Lutzer D., Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc. 51 (1975), 483-488. (1975) Zbl0307.54030MR0370519
- Engelking R., General Topology, PWN, Warszawa, 1977. Zbl0684.54001MR0500780
- Foged L., A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985), 487-490. (1985) Zbl0592.54027MR0806093
- Gruenhage G., Generalized metric spaces, in: K. Kunen, J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, 1984, pp.423-501. Zbl0794.54034MR0776629
- Gruenhage G., Michael E., Tanaka Y., Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332. (1984) Zbl0561.54016MR0749538
- Liu C., On weakly bisequential spaces, Comment Math. Univ. Carolin. 41 3 (2000), 611-617. (2000) Zbl1038.54004MR1795090
- Liu C., Notes on g-metrizable spaces, Topology Proc. 29 1 (2005), 207-215. (2005) Zbl1085.54019MR2182930
- Liu C., Nagata-Smirnov revisited: spaces with -wHCP bases, Topology Proc. 29 2 (2005), 559-565. (2005) Zbl1123.54009MR2244489
- Michael E., A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138. (1972) Zbl0238.54009MR0309045
- Nogura T., Shakhmatov D., Tanaka Y., -property versus -property in topological spaces and groups, Studia Sci. Math. Hungar. 33 (1997), 351-362. (1997) Zbl0902.22001MR1601628
- Nyikos P., Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 4 (1981), 793-801. (1981) Zbl0474.22001MR0630057
- O'Meara P., On paracompactness in function spaces with the compact open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189. (1971) Zbl0214.21105MR0276919
- Sirois-Dumais R., Quasi- and weakly-quasi-first-countable space, Topology Appl. 11 (1980), 223-230. (1980) MR0572376
- Svetlichnyi S.A., Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser I Mat. Mekh. 4 (1989), 79-81. (1989) MR1029763
- Reznichenko E.A., Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233-244. (1994) MR1299719
- Tanaka Y., Metrizability of certain quotient spaces, Fund. Math. 119 (1983), 157-168. (1983) MR0731817
- Zenor P., On spaces with regular -diagonals, Pacific J. Math. 40 (1972), 759-763. (1972) MR0307195
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.