A Note on Computing Extreme Tail Probabilities of the Noncentral -Distribution with Large Noncentrality Parameter
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)
- Volume: 52, Issue: 2, page 131-143
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topWitkovský, Viktor. "A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.2 (2013): 131-143. <http://eudml.org/doc/260777>.
@article{Witkovský2013,
abstract = {The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.},
author = {Witkovský, Viktor},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {noncentral $t$-distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm; noncentral -distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm},
language = {eng},
number = {2},
pages = {131-143},
publisher = {Palacký University Olomouc},
title = {A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter},
url = {http://eudml.org/doc/260777},
volume = {52},
year = {2013},
}
TY - JOUR
AU - Witkovský, Viktor
TI - A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 2
SP - 131
EP - 143
AB - The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.
LA - eng
KW - noncentral $t$-distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm; noncentral -distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm
UR - http://eudml.org/doc/260777
ER -
References
top- Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Tenth Edition, National Bureau of Standards, 1972. (1972) Zbl0543.33001
- Airey, J. R., Irwin, J. O., Fisher, R. A., Introduction to Tables of Functions, British Association for the Advancement of Science, Mathematical Tables 1, XXIV–XXXV, 1931. (1931)
- Benton D., Krishnamoorthy K., 10.1016/S0167-9473(02)00283-9, Computational Statistics & Data Analysis 43 (2003), 249–267. (2003) MR1985338DOI10.1016/S0167-9473(02)00283-9
- Bristow, P. A., Maddock, J., DistExplorer: Statistical Distribution Explorer, Boost Software License, Edition: Version 1.0., 2012 http://sourceforge.net/projects/distexplorer/. (2012)
- Guenther, W. C., 10.1080/00949657808810188, Journal of Statistical Computation and Simulation 6 (1978), 199–206. (1978) DOI10.1080/00949657808810188
- Hahn, G. J., Meeker, G. J., Statistical Intervals: A Guide for Practitioners, John Wiley & Sons, New York, 1991. (1991) Zbl0850.62763
- Holoborodko P., Multiprecision Computing Toolbox for MATLAB, Advanpix, Yokohama. Edition: Version 3.4.3, 2013 http://www.advanpix.com. (2013)
- Inglot, T., Inequalities for quantiles of the chi-square distribution, Probability and Mathematical Statistics 30 (2010), 339–351. (2010) Zbl1231.62092MR2792589
- Inglot, T., Ledwina, T., 10.1016/j.anihpb.2005.05.002, Annales de l’Institut Henri Poincaré 42 (2006), 579–590. (2006) MR2259976DOI10.1016/j.anihpb.2005.05.002
- Janiga, I., Garaj, I., One-sided tolerance factors of normal distributions with unknown mean and variability, Measurement Science Review 8 (2006), 12–16. (2006)
- Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions, Volume 2, Second Edition, John Wiley & Sons, New York, 1995. (1995) MR1326603
- Kim, J., Efficient Confidence Inteval Methodologies for the Noncentrality Parameters of the Noncentral -Distributions, PhD Thesis, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 2007. (2007) MR2710174
- Krishnamoorthy, K., Mathew, T., Statistical Tolerance Regions: Theory, Applications, and Computation, John Wiley & Sons, New York, 2009. (2009) MR2500599
- Lenth, R. V., 10.2307/2347693, Applied Statistics 38 (1989), 185–189. (1989) DOI10.2307/2347693
- Maddock, J., Bristow, P. A., Holin, H., Zhang, X., Lalande, B., Rade, J., Sewani, G., van den Berg, T., Sobotta, B., Noncentral Distribution, Boost C++ Libraries, Edition: Version 1.53.0, 2012 http://www.boost.org. (2012)
- The MathWorks Inc., MATLAB Edition: Version 8.0.0.783 (R2012b), Natick, Massachusetts, 2012 http://www.mathworks.com. (2012)
- R Development Core Team., R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Edition: Version 3.0.0, Vienna, Austria, 2013 http://www.R-project.org. (2013)
- SAS Institute Inc., PROBT Function. SAS(R) 9.3 Functions and CALL Routines: Reference, 2013 http://support.sas.com/. (2013)
- Student, 10.1093/biomet/6.1.1, Biometrika 6 (1908), 1–25. (1908) DOI10.1093/biomet/6.1.1
- Wolfram Research, Inc., Mathematica Edition: Version 9.0, Wolfram Research, Inc., Champaign, Illinois, 2013 http://www.wolfram.com/mathematica/. (2013)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.