A Note on Computing Extreme Tail Probabilities of the Noncentral t -Distribution with Large Noncentrality Parameter

Viktor Witkovský

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2013)

  • Volume: 52, Issue: 2, page 131-143
  • ISSN: 0231-9721

Abstract

top
The noncentral t -distribution is a generalization of the Student’s t -distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral t -distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral t -distribution, even for large values of the noncentrality parameter δ and the degrees of freedom ν . The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.

How to cite

top

Witkovský, Viktor. "A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 52.2 (2013): 131-143. <http://eudml.org/doc/260777>.

@article{Witkovský2013,
abstract = {The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.},
author = {Witkovský, Viktor},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {noncentral $t$-distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm; noncentral -distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm},
language = {eng},
number = {2},
pages = {131-143},
publisher = {Palacký University Olomouc},
title = {A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter},
url = {http://eudml.org/doc/260777},
volume = {52},
year = {2013},
}

TY - JOUR
AU - Witkovský, Viktor
TI - A Note on Computing Extreme Tail Probabilities of the Noncentral $t$-Distribution with Large Noncentrality Parameter
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2013
PB - Palacký University Olomouc
VL - 52
IS - 2
SP - 131
EP - 143
AB - The noncentral $t$-distribution is a generalization of the Student’s$t$-distribution. In this paper we suggest an alternative approach for computing the cumulative distribution function (CDF) of the noncentral$t$-distribution which is based on a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides highly precise and fast evaluation of the extreme tail probabilities of the noncentral $t$-distribution, even for large values of the noncentrality parameter $\delta $ and the degrees of freedom $\nu $. The implementation of the algorithm is available at the MATLAB Central, File Exchange: www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.
LA - eng
KW - noncentral $t$-distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm; noncentral -distribution; cumulative distribution function (CDF); noncentrality parameter; extreme tail probability; MATLAB algorithm
UR - http://eudml.org/doc/260777
ER -

References

top
  1. Abramowitz M., Stegun I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Tenth Edition, National Bureau of Standards, 1972. (1972) Zbl0543.33001
  2. Airey, J. R., Irwin, J. O., Fisher, R. A., Introduction to Tables of H h Functions, British Association for the Advancement of Science, Mathematical Tables 1, XXIV–XXXV, 1931. (1931) 
  3. Benton D., Krishnamoorthy K., 10.1016/S0167-9473(02)00283-9, Computational Statistics & Data Analysis 43 (2003), 249–267. (2003) MR1985338DOI10.1016/S0167-9473(02)00283-9
  4. Bristow, P. A., Maddock, J., DistExplorer: Statistical Distribution Explorer, Boost Software License, Edition: Version 1.0., 2012 http://sourceforge.net/projects/distexplorer/. (2012) 
  5. Guenther, W. C., 10.1080/00949657808810188, Journal of Statistical Computation and Simulation 6 (1978), 199–206. (1978) DOI10.1080/00949657808810188
  6. Hahn, G. J., Meeker, G. J., Statistical Intervals: A Guide for Practitioners, John Wiley & Sons, New York, 1991. (1991) Zbl0850.62763
  7. Holoborodko P., Multiprecision Computing Toolbox for MATLAB, Advanpix, Yokohama. Edition: Version 3.4.3, 2013 http://www.advanpix.com. (2013) 
  8. Inglot, T., Inequalities for quantiles of the chi-square distribution, Probability and Mathematical Statistics 30 (2010), 339–351. (2010) Zbl1231.62092MR2792589
  9. Inglot, T., Ledwina, T., 10.1016/j.anihpb.2005.05.002, Annales de l’Institut Henri Poincaré 42 (2006), 579–590. (2006) MR2259976DOI10.1016/j.anihpb.2005.05.002
  10. Janiga, I., Garaj, I., One-sided tolerance factors of normal distributions with unknown mean and variability, Measurement Science Review 8 (2006), 12–16. (2006) 
  11. Johnson, N. L., Kotz, S., Balakrishnan, N., Continuous Univariate Distributions, Volume 2, Second Edition, John Wiley & Sons, New York, 1995. (1995) MR1326603
  12. Kim, J., Efficient Confidence Inteval Methodologies for the Noncentrality Parameters of the Noncentral T -Distributions, PhD Thesis, H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 2007. (2007) MR2710174
  13. Krishnamoorthy, K., Mathew, T., Statistical Tolerance Regions: Theory, Applications, and Computation, John Wiley & Sons, New York, 2009. (2009) MR2500599
  14. Lenth, R. V., 10.2307/2347693, Applied Statistics 38 (1989), 185–189. (1989) DOI10.2307/2347693
  15. Maddock, J., Bristow, P. A., Holin, H., Zhang, X., Lalande, B., Rade, J., Sewani, G., van den Berg, T., Sobotta, B., Noncentral T Distribution, Boost C++ Libraries, Edition: Version 1.53.0, 2012 http://www.boost.org. (2012) 
  16. The MathWorks Inc., MATLAB Edition: Version 8.0.0.783 (R2012b), Natick, Massachusetts, 2012 http://www.mathworks.com. (2012) 
  17. R Development Core Team., R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Edition: Version 3.0.0, Vienna, Austria, 2013 http://www.R-project.org. (2013) 
  18. SAS Institute Inc., PROBT Function. SAS(R) 9.3 Functions and CALL Routines: Reference, 2013 http://support.sas.com/. (2013) 
  19. Student, 10.1093/biomet/6.1.1, Biometrika 6 (1908), 1–25. (1908) DOI10.1093/biomet/6.1.1
  20. Wolfram Research, Inc., Mathematica Edition: Version 9.0, Wolfram Research, Inc., Champaign, Illinois, 2013 http://www.wolfram.com/mathematica/. (2013) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.